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Branching Processes with Infinite Collection

of Particle Types and Stochastic Fragmentation Theory
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Abstract

The stochastic model for the description of the so-called fragmenta-
tion process in frameworks of Kolmogorov approach is proposed. This
model is represented as the branching process with continuum set (0,∞)
of particle types. Each type r ∈ (0,∞) corresponds to the set of frag-
ments having the size r. It is proved that the branching condition of this
process represents the basic equation of the Kolmogorov theory.

1. Introduction

There are various natural processes that represent the evolution in time of

solid state media in the form of some successive subdivisions of all its connected

parts to smaller parts having random forms and volumes, and, consequently,

masses and/or chemical compositions. In statistical physics they are called the

fragmentation processes. It is clear that such processes may have an adequate

mathematical description only on the basis of some concepts of probability

theory. Notice also that even the description of each separate random state

of such a physical system, i.e., the construction of the space Ω of elemen-

tary events, meets with large difficulties. From one side, it is not clear what

principles are necessary to use in order to construct adequate stochastic dy-

namics in the form of a random process in the space Ω. On the other hand, it

seems unreasonable to think that the models of the great variety of physical

fragmentation processes may be done on the basis of some relatively simple

probabilistic scheme.

In the initial work of A.N.Kolmogorov on Statistical Fragmentation The-

ory [1], an approach to probabilistic description of fragmentation processes is

proposed. It is based on the use of states characterizing the dynamical di-

vision system at each specified time instant t by a random function Ñ(r, t)

that takes values only in N+ and depends only on the unique nonnegative pa-

rameter r, which we shall further call the fragment size. Each value of this
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function represents the number of fragments at time instant t with sizes be-

ing not greater than r. Therefore, in the framework of this approach, the

mathematical model of fragmentation is represented by a random process

{Ñ(r, t); t ∈ R+ = (0,∞)}, r ∈ R+ with values in RN+

+ .

In [1] a simple evolution equation for mathematical expectations EÑ(r, t)

(we consider the discrete time case) is formulated. It has markovian type and

is constructed in terms of mathematical expectation Eν̃(r|r′; t) of the other

random function ν̃(r|r′; t) : R+ × R+ × N+ 7→ N+ that is the random number

of fragments with sizes not greater than r and generated at time instant t from

a specified randomly chosen fragment having the size r′. This equation has the

following form

EÑ (r, t+ 1) =

1∫
0

EÑ (r/k, t) dS (k, t) (1.1)

under the assumption that the function Eν̃(r|r′; t) ≡ S(k, t) depends only on

the fraction k = r/r′. Thus, the model formulated in [1] is obtained on the

basis of some phenomenological reasons as it is said in physical literature.

These reasons are based on the concept of ”the average field” that is often

in use in statistical physics. Further, in the work [1], it is proved that the

integral limit theorem for the distribution function EÑ(r, t)/EÑ(∞, t) takes

place under the assumption that the function Eν̃ (k, t) does not depend on

time and that its second ”logarithmic” moment in the variable k is finite. It

may be considered as the partial one-dimensional probabilistic distribution of

the random process {r̃(t); t ∈ [0,∞)}, with nonnegative trajectories r̃(t). It

may be considered as the size of randomly chosen fragment from the whole

system at time t.

Here, we shall not discuss the physical question relative to applicability

of the above-mentioned approach of the mathematical modeling to some real

physical fragmentation processes. Our problem consist of the ground of the

equation (1.1) on the basis of an explicit construction of the random process

{Ñ(r, t); t ∈ [0,∞)}. The idea of such a ground has been stated in the cited

work [1]. But it seems that the consequent authors (see, e.g., the fundamental

work [2]) have not taken into account the great importance of this idea to

realize it. From our point of view such an explicit construction of the mathe-

matical model of a higher level, in the frameworks of which the main master

equation (1.1) of Kolmogorov theory can be proved as a mathematical state-

ment, may represent the important base for constructing more complicated

(and, therefore, more adequate) models in the fragmentation theory.
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2. Mathematical model description

Specify a number ∆ > 0. Further, divide the positive part [0,∞) of the

real line into the sequence of disjoint half-open intervals ⟨[i∆, (i+1)∆); i ∈ N+⟩
being open from the right. Their union coincides with [0,∞). Introduce the

random process N∆ with discrete time and with values in the set NN+

+ . The

sampling space of this process consists of some random collections of functions

{⟨ν̃i(t); i ∈ N+⟩; t ∈ N+}. Each function takes its values in N+. By its sense,

each function ν̃i(t), i = 0, 1, 2, ... represents the number of fragments, having

random sizes, that belong to half-interval [i∆, (i + 1)∆). Define the process

N∆ as the Markov branching one with discrete time [3] (the Markov chain).

Generally speaking, it is inhomogeneous in time. Besides, it has an infinite

collection N+ of particle types. The last words are taken from the terminology

of branching random process theory. In our problem fragments with specified

size r are the particles of some definite type from the point of view of this

terminology.

Since the countable set NN+

+ is the process state space, then for each time

instant t ∈ N+ the conditional probabilities

Q(mi, i ∈ N+|nj , j ∈ N+; t) = Pr{ν̃j(t+ 1) = nj , j ∈ N+|ν̃i(t) = mi, i ∈ N+}
(2.1)

of transitions form an infinite matrix when arguments nj ,mi ∈ N+, i, j ∈ N+

are changed. The matrix (2.1) of transition conditional probabilities defines

completely the Markov chain with countable set of states. In particular, it

defines the evolution of one-dimensional partial probability distribution of this

chain

P (ni, i ∈ N+; t) = Pr{ν̃i(t) = ni, i ∈ N+} ,

namely, it is defined uniquely by the Markov chain equation

P (nj , j ∈ N+; t+ 1) =
∑
{mi}

P (mi, i ∈ N+; t)Q(mi, i ∈ N+|nj , j ∈ N+; t) (2.2)

where, here and below, the symbol of summation means that it is done with

respect to all possible distributions of ”filling numbers”, i.e., with respect to

all collections ⟨mi, i ∈ N+⟩ ∈ NN+

+ .

For the matrix Q(mi, i ∈ N+|nj , j ∈ N+; t), nj ,mi ∈ N+, i, j ∈ N+,

we shall use also the shorter notation Q(mi|nj ; t). It is constructed for the

Markov branching process by the following way. Define the function ql(kj , j ∈
N+; t) ≡ ql(kj ; t). It represents the probability of the event that describes

the fact that a specified fragment with size l (i.e., its size r belongs to the

half-interval [l∆, (l + 1)∆) ) transforms, at the time instant t, into the set of

fragments and this set is characterized by the collection of filling numbers

⟨kj ; j ∈ N+⟩. In this case, of course, this probability is not zero only if kj =

0 at j > l. Thus, ql(kj , j ∈ N+; t) is the probability of the fact that the
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random function ν̃l,j(t) : N+ × N+ × N+ 7→ N+ takes value kj . The function

is the number of fragments with sizes j that are formed from the specified

fragment with size l at the time instant t; here, the second argument j is

not greater than l. Further, we introduce the random function η̃ : N+ ×
N+ × N × N+ 7→ N+, η̃l,j(m; t) = ν̃

(1)
l,j (t) + ν̃

(2)
l,j (t) + ... + ν̃

(m)
l,j (t) for each pair

l, j ∈ N+. It is the sum of m ∈ N statistically independent random functions

ν̃
(1)
l,j (t), ν̃

(2)
l,j (t), ... , ν̃

(m)
l,j (t) and it represents the set of filling numbers on sizes

j of fragments formed by subdivision at the time instant t from m identical

fragments having the size l. In such a definition of the branching condition that

describes the disintegration of fragments having the size l, the individuality of

each fragment is lost, i.e., for each fixed fragment in the final state we does

not take into account the fact, from which fragment of the size l it is appeared

as a result of the disintegration. Due to the given definition of the random

function η̃l(m, kj , j ∈ N+; t), its probability distribution ql(m|kj , j ∈ N+; t) is

defined by the m-multiple convolution of the probability distribution collection

ql(k
(i)
j , j ∈ N+; t), i = 1, ...,m,

ql(m|kj , j ∈ N+; t) =
∑

k
(i)
j

≥0,i=1,...,m,

k
(1)
j

+...+k
(m)
j

=kj,j∈N+

m∏
i=1

ql

(
k
(i)
j , j ∈ N+; t

)
. (2.3)

Indeed, the probability ql(m|kj , j ∈ N+; t) is equal to zero if there exists j ∈ N+,

j > l such that the inequality kj ̸= 0 is valid.

At last, the matrix Q(mi|nj ; t) is determined by the formula

Q(mi, i ∈ N+|nj , j ∈ N+; t) =

=
∑

kij≥0;i,j∈N+

[ ∞∏
i=0

qi(mi|kil, l ∈ N+; t)

] ∞∏
j=0

δ

nj −
∑
l:l≥j

klj

 (2.4)

where δ(n−n′) ≡ δn,n′ is the Kronecker symbol and the summation is done on

all two-placed functions kij : N+ ×N+ 7→ N+. The sense of the integer matrix

is that it determines the fragment numbers with the size j that are formed

from all fragments with size i.

The matrix Q(mi|nj ; t) and the probability distribution P (nj , j ∈ N+; 0)

determine the random processN∆ completely as well as (in particular) its char-

acteristic functional Ψ∆[u] : SN+
∞ (R+) 7→ C, the value of which is determined

as

Ψ∆[u] = E exp

i

∞∑
t=0

∞∑
j=0

ν̃j(t)

(j+1)∆∫
j∆

ut(x)dx

 (2.5)

for each function sequence ut(x), t = 0, 1, 2, ... from the space S∞(R+) of

compactly supported functions being infinitely differentiable on R+. Values



THE KOLMOGOROV EQUATION IN STOCHASTIC FRAGMENTATION THEORY 977

of the functional exist due to the support compactness in x of the functions

ut(x).

Definition 2.1. Generalized random process N with the characteristic

functional Ψ[u], determined by the limit

Ψ[u] = lim
∆→0

Ψ∆[u] (2.6)

for each function ut(x) ∈ SN+
∞ (R+), is called the random Kolmogorov fragmen-

tation process.

3. Equation for the generating function

Introduce the space S∞(N+) of finite sequences. More strictly, S∞(N+)

consists of those infinite sequences X = ⟨xl; l ∈ N+⟩ whose components are

equal to zero beginning from some number. Further, we shall imply that such

sequences X have only nonnegative components. The set of all those sequences

forms the cone in S∞(N+).

We also introduce the sequence G[X, t] = ⟨gl[X, t]; l ∈ N+⟩ whose compo-

nents are generating functions of probability distributions ql(kj ; t), l ∈ N+,

gl[X, t] =
∑
{kj}

 ∞∏
j=0

x
kj

j

 ql(kj , j ∈ N+; t) . (3.1)

Formally, they are functions of countable set of variables. However, taking into

account that X are finite sequences, they are really defined by the sequence

of functions on finite collections of variables. Each l-th component of such a

sequence is the function of l variables where l is determined by the maximal

number among nonzero components in X.

Now compute the sums

h
(n)
l [X, t] =

∑
{kj}

 ∞∏
j=0

x
kj

j

 ql(n|kj , j ∈ N+; t) =

=
∑
{kj}

 ∞∏
j=0

x
kj

j

 ∑
k
(i)
j

≥0,i=1,...,n,

k
(1)
j

+...+k
(n)
j

=kj,j∈N+

n∏
i=1

ql

(
k
(i)
j , j ∈ N+; t

)
=

=
∑
{kj}

∑
k
(i)
j

≥0,i=1,...,n,

k
(1)
j

+...+k
(n)
j

=kj,j∈N+

n∏
i=1

 ∞∏
j=0

x
k
(i)
j

j

 ql

(
k
(i)
j′ , j

′ ∈ N+; t
)
=
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=
∑

k
(i)
j ≥0;i=1,...,n,j∈N+

n∏
i=1

 ∞∏
j=0

x
k
(i)
j

j

 ql

(
k
(i)
j′ , j

′ ∈ N+; t
)
=

=

n∏
i=1

∑
{k(i)

j }

 ∞∏
j=0

x
k
(i)
j

j

 ql

(
k
(i)
j′ , j

′ ∈ N+; t
) =

n∏
i=1

gl[X, t] = gnl [X, t] .

Finally, compute the sum

h[mi, i ∈ N+|nj , j ∈ N+;X, t] =

=
∑
{nj}

 ∞∏
j=0

x
nj

j

Q(mi, i ∈ N+|nj′ , j
′ ∈ N+; t) =

=
∑
{nj}

∑
kij≥0;i,j∈N+

 ∞∏
j=0

x
nj

j δ

nj −
∑
l:l≥j

klj

[ ∞∏
i=0

qi(mi|kil, l ∈ N+; t)

]
=

=
∑

kij≥0;i,j∈N+

 ∞∏
i=0

 ∞∏
j=0

x
kij

j

 qi(mi|kil, l ∈ N+; t)

 =

=

∞∏
i=0

 ∑
kij≥0;j∈N+

 ∞∏
j=0

x
kij

j

 qi(mi|kil, l ∈ N+; t)

 =

=

∞∏
i=0

h
(mi)
i [X, t] =

∞∏
i=0

gmi

i [X, t] (3.2)

where we use the rule

∞∏
j=0

x
nj

j =

∞∏
j=0

∏
i:i≥j

x
kij

j =

∞∏
i=0

∏
j:i≥j

x
kij

j ,

and also we take into account that probabilities qi(mi|kil, l ∈ N+; t) are not

zero only if kij = 0 at i < j.

After these preparatory computations introduce the generating function

Ht[X] of the one-dimensional probability distribution P (nj , j ∈ N+; t) of the

Markov chain at the time t according to the formula

Ht[X] =
∑
{nj}

 ∞∏
j=0

x
nj

j

P (nj , j ∈ N+; t) .
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Then, applying the operation
∑
{nj}

 ∞∏
j=0

x
nj

j

 to the equation of motion (2.2)

and using (3.2), we find the equation of the generating function Ht[X] motion,

Ht+1[X] =
∑
{nj}

 ∞∏
j=0

x
nj

j

∑
{mi}

P (mi, i ∈ N+; t)Q(mi, i ∈ N+|nj , j ∈ N+; t) =

=
∑
{mi}

P (mi, i ∈ N+; t)
∑
{nj}

 ∞∏
j=0

x
nj

j

Q(mi, i ∈ N+|nj , j ∈ N+; t) =

=
∑
{mi}

P (mi, i ∈ N+; t)h[mi, i ∈ N+|nj , j ∈ N+;X, t] =

=
∑
{mi}

P (mi, i ∈ N+; t)

( ∞∏
i=0

gmi

i [X, t]

)
= Ht[G[X, t]] ,

where G[X, t] = ⟨gl[X, t]; l ∈ N+⟩.
Thus, we have proved the following

Theorem 3.1. Generating function Ht[X] of the probability distri-

bution P (nj , j ∈ N+; t) is governed by the equation

Ht[X] = Ht[G[X, t]] (3.3)

that together with the initial condition H0[X] completely determines this dis-

tribution.

4. Kolmogorov’s master equation

On the basis of equation (3.3) we now obtain the evolution equation of

mathematical expectations for the random process N∆. For this, we intro-

duce the matrix slj(t) = Eν̃lj(t) of mathematical expectations whose matrix

elements are distinguished from zero only at j ≤ l. It is defined by the formula

slj(t) =

∞∑
kj=0

kjql(kj′ , j
′ ∈ N+; t) =

(
∂gl[X, t]

∂xj

)
X≡1

. (4.1)

Further, the mathematical expectation nl(t) = Eν̃l(t) of the number ν̃l(t) of

fragments with the size l at the time instant t is defined by the generating

functional Ht[X] by means of its partial derivative in xl at the point X ≡ 1,

nl(t) = Eν̃l(t) =

(
∂Ht[X]

∂xl

)
X≡1

.
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Then, on the basis of (3.3) and (4.1), we find

nl(t+ 1) =

(
∂Ht+1[X]

∂xl

)
X≡1

=

∞∑
m=l

(
∂Ht[G[X, t]]

∂gm[X, t]

)
X≡1

(
∂gm[X, t]

∂xl

)
X≡1

that is

nl(t+ 1) =

∞∑
m=l

nm(t)sml(t) . (4.2)

Now introduce the functions

Nl(t) =

l∑
k=0

nk(t) , Sml(t) =

l∑
k=0

smk(t) .

Then, by summing up the equations (4.2) for all l, we derive the motion equa-

tion in terms of this functions:

Nl(t+ 1) =

l∑
k=0

∞∑
m=k

nm(t)smk(t) =

=

l−1∑
k=0

l−1∑
m=k

nm(t)smk(t) +

l∑
k=0

∞∑
m=l

nm(t)smk(t) =

=

l−1∑
m=0

nm(t)

m∑
k=0

smk(t) +

∞∑
m=l

nm(t)Sml(t) =

=

l−1∑
m=0

Smm(t)[Nm(t)−Nm−1(t)] +

∞∑
m=l

Sml(t)[Nm(t)−Nm−1(t)] , (4.3)

where N−1(t) = 0.

At last introduce the function N∆(r; t) : R+ × N+ 7→ R+,

N∆(r; t) = Nl(t) , if r ≤ l∆ < r +∆ .

It is continuous from the left and it is equal to the average fragment number

having sizes not greater than r. Besides, introduce the function S∆(r, r
′; t) :

R+ × R+ × N+ 7→ R+,

S∆(r, r
′; t) = Sml(t) , if r ≤ l∆ < r +∆ , r′ ≤ m∆ < r′ +∆

being continuous from the left in both arguments r and r′. Then for (l−1)∆ <

r ≤ l∆ it follows from (4.3) that

N∆(r; t+1) =

l−1∑
m=0

S∆(rm, rm; t)[N∆(rm+∆; t)−N∆(rm; t)]+

+

∞∑
m=l

S∆(rm, r; t)[N∆(rm +∆; t)−N∆(rm; t)]
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where rm = m∆. The sums in the right hand side of this equality may be

considered as integral sums of the Riman-Stiltyes integral for step functions

N∆(r; t) and S∆(r
′, r; t), i.e.,

N∆(r; t+ 1) =

r−0∫
0

S∆(r
′, r′; t)dN∆(r

′; t) +

∞∫
r−0

S∆(r
′, r; t)dN∆(r

′; t) .

Assuming that the function S∆(r
′, r; t) tends to a continuous function

S(r′, r; t) as ∆ → 0 and the function N∆(r; t) tends to a monotone non-

decreasing functionN(r, t) and since discontinuity points of functions S∆(r
′, r; t)

and N∆(r
′, t) in the argument r′ coincide for every t, we may apply the second

Helly theorem. It permits to realize the limit transition under the integral sign.

In this case, we obtain the equation for evolution of average fragment number

distribution in the form

N(r; t+ 1) =

r−0∫
0

S(r′, r′; t)dN(r′; t) +

∞∫
r−0

S(r′, r; t)dN(r′; t) . (4.4)

Thus, the following statement takes place

Theorem 4.1. Statistical characteristic N(r, t) = EÑ(r, t) of the gener-

alized random process N is governed by the equation (4.4).

At last, we show that the equation (1.1) of the Kolmogorov theory is

a particular case of equation (4.4). We suppose that the function S(r′, r; t)

depends only on the ratio r/r′, i.e., S(r′, r; t) = S(r/r′; t). In this case equation

(4.4) is represented in the form

N(r; t+ 1) = S(1; t)N(r − 0; t) +

∞∫
r−0

S(r/r′; t)dN(r′; t) .

Applying the integration by parts with the use of conditions N(∞; t) < ∞,

S(0; t) = 0, we get

N(r; t+ 1) =

∞∫
r−0

N(r′; t)dS(r/r′; t) .

Introducing the integration variable k = r/r′, we obtain

N(r; t+ 1) =

1+0∫
0

N(r/k; t)dS(k; t) ,

The latter differs from equation (1.1) only by taking into account the possibility

that the function S(k; t) may have step in the point k = 1.



982 R.E. BRODSKII AND YU.P. VIRCHENKO

5. Conclusion

We have shown how the Kolmogorov equation in statistical fragmentation

theory may be justified in the framework of a certain probabilistic scheme.

At the same time, even in the framework of the construction presented in the

work, some general mathematical questions have been still unsolved. For ex-

ample, it is necessary to clear up under what conditions the limit distribution

of probabilistic distributions ql(kj , j ∈ N+; t) exists and how it should be un-

derstood. The simplest situation when we try to answer this question is when

this limit should be understood in weak sense. However, it is desirable that

this weak limit nevertheless guarantees the existence of random realizations

with probability 1. They should be regarded as some finitepoint random sets

on R+.

It is necessary to find some conditions for distributions ql(kj , j ∈ N+; t)

that guarantee the existence of the limit mathematical expectation

lim
∆→0

∑
j∈N+:j∆<r

Eν̃lj(t) such that it is a continuous function S(r′, r; t).

Finally, it is very important to prove the existence of the limit character-

istic functional Ψ[u] and, moreover, the existence of random trajectories of the

process connected with this functional.
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