MSC 34K30

ЗАДАЧА ТИПА КОШИ ДЛЯ АБСТРАКТНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ДРОБНЫМИ ПРОИЗВОДНЫМИ АДАМАРА

Т.А. Манаенкова

Белгородский государственный национальный исследовательский университет, ул. Студенческая, 14, Белгород, 308007, Россия, e-mail: <u>Manaenkova@bsu.edu.ru</u>

В банаховом пространстве X при $0<\alpha,\beta<1$ рассмотривается задача типа Коши

$${}^{H}D_{a+}^{\alpha}{}^{H}D_{a+}^{\beta}u(t) = Au(t), \quad t > a,$$
 (1)

$$\lim_{t \to a+} {}^{H}D_{a+}^{\beta-1}u(t) = 0, \quad \lim_{t \to a+} {}^{H}D_{a+}^{\alpha-1}\left({}^{H}D_{a+}^{\beta}u(t)\right) = u_{1},\tag{2}$$

при этом будем считать, что A — линейный замкнутый оператор, ${}^HD_{a+}^{\beta-1}u(t) =$

$$^{H}I_{a+}^{1-\beta}u(t)=rac{1}{\Gamma(1-\beta)}\int\limits_{a}^{t}\left(\lnrac{t}{x}
ight)^{-\beta}u(x)\;rac{dx}{x}$$
 — левосторонний дробный интеграл Адамара порядка $1-\beta$ (см. [1]).

Применим к обеим частям уравнения (1) операторы ${}^HI^{\alpha}_{a+}$ и ${}^HI^{\beta}_{a+}$ дробного интегрирования порядка α . Учитывая начальные условия, получим интегральное уравнение вида

$$u(t) = \left(\ln\frac{t}{a}\right)^{\alpha+\beta-1} \frac{u_1}{\Gamma(\alpha+\beta)} + \frac{1}{\Gamma(\alpha+\beta)} \int_a^t \left(\ln\frac{t}{s}\right)^{\alpha+\beta-1} Au(s) \frac{ds}{s} . \tag{3}$$

Определение 1. Интегральное уравнение (3) называется равномерно корректным, если для каждого $u_1 \in D(A)$ существует единственное решение $u(\tau; u_1) \in C(\mathbb{R}_+, D(A))$ этого уравнения и если $u_{1,m} \in D(A)$, $u_{1,m} \to 0$ влечет сходимость $u(\tau; u_{1,m}) \to 0$ равномерно по t на любом компактном интервале из $(0, \infty)$.

Определение 2. Операторная функция $W_{\alpha,\beta}(\tau) \in \mathcal{B}(X)$ называется разрешающим оператором для задачи (1), (2), если выполнены следующие условия:

- (i) $W_{\alpha,\beta}(\tau)$ сильно непрерывна при t>0 и $D_{0+}^{\alpha-1}(D_{0+}^{\beta})W_{\alpha,\beta}(0)=I,$
- (ii) $W_{\alpha,\beta}(\tau)$ коммутирует c A, то есть, $W_{\alpha,\beta}(\tau)D(A)\subset D(A)$ u $AW_{\alpha,\beta}(\tau)u_{n-1}=W_{\alpha,\beta}(\tau)Au_{n-1}$ для любого $u_{n-1}\in D(A)$ и t>0,
 - (iii) $W_{\alpha,\beta}(\tau)u_{n-1}$ является решением задачи (1), (2) для любого $u_{n-1} \in D(A)$ и t > 0.

Определение 3. Будем говорить, что оператор A принадлежит классу $\mathfrak{F}^{\alpha,\beta}(M,\omega)$, если задача (1), (2) имеет разрешающий оператор $W_{\alpha,\beta}(\tau)$, удовлетворяющий неравенству

$$||W_{\alpha,\beta}(\tau)|| \le M \left(\ln \frac{\tau}{a}\right) \tau^{\omega}, \quad \tau > 0, \tag{4}$$

где $\omega \in \mathbb{R}$ и функция $M(\tau) = \tau^{\alpha+\beta-1} \in L^1(\mathbb{R}_+)$.

Лемма 1. Пусть $A \in \mathcal{F}^{\alpha,\beta}(M,\omega)$, тогда оператор $(\lambda^{\alpha+\beta}I - A)$ обратим и $\widehat{W}_{\alpha,\beta}(\lambda) = R(\lambda^{\alpha+\beta},A)$, то есть, множество $\{\lambda^{\alpha}: \operatorname{Re} \lambda > \omega\}$ включено в $\rho(A)$ и

$$R(\lambda^{\alpha+\beta}, A)u_1 = \int_0^\infty e^{-\lambda t} W_{\alpha,\beta}(t) u_1 \ dt, \quad u_1 \in X.$$
 (5)

Теорема 1. Пусть $\alpha > 0$, $\beta > 0$. Тогда $A \in \mathcal{F}^{\alpha,\beta}(M,\omega)$ оператор $D_{0+}^{\alpha-1}D_{0+}^{\beta}W_{\alpha,\beta}(t)$ непрерывен в равномерной операторной топологии только тогда, когда $A \in \mathfrak{B}(X)$.

Теорема 2. Пусть $0<\alpha,\beta<1.$ В этом случае $A\in\mathfrak{F}^{\alpha,\beta}(M,\omega)$ только тогда, когда $(\omega^\alpha,\infty)\subset\varrho(A)$ и

$$\sum_{n=0}^{\infty} \frac{(\lambda - \omega)^n}{n!} \left\| \frac{d^n R(\lambda^{\alpha + \beta}, A)}{d\lambda^n} \right\| \le K_0, \quad \lambda > \omega, \ K_0 > 0.$$
 (6)

Теорема 3. Пусть $0 < \alpha \le 2$. Тогда $A \in \mathcal{F}^{\alpha,\beta}(M,\omega)$ только тогда, когда $(\omega^{\alpha},\infty) \subset \varrho(A)$ и существует сильно непрерывная операторная функция W(t), удовлетворяющая неравенству $\|W(t)\| \le M(t)t^{\omega}$, t > 0, $M(t) \in L^1(\mathbb{R}_+)$ такая, что

$$R(\lambda^{\alpha}, A)u_{n-1} = \int_0^{\infty} e^{-\lambda t} W(t) u_{n-1} dt, \quad u_{n-1} \in X,$$

$$(7)$$

и в этом случае $W(t) = W_{\alpha,\beta}(t)$.

Литература

1. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения / Минск: Наука и техника, 1987.