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Abstract. The influence of warm swaging on the structure and properties of Ti-6Al-4V alloy 

was studied. Warm swaging of the alloy in the interval 680-500°C with the total strain of 

ε=2.66 was found to be resulted in the formation of a homogeneous globular microstructure 

with a grain size of 0.4µm in both longitudinal and transversal sections. Room temperature 
tensile strength and tensile elongation of the swaged alloy was 1315MPa and 10.5%, 
respectively. Ultrafine-grained Ti-6Al-4V alloy produced by swaging exhibited good 

workability at 600-700 °C. 

1. Introduction 

One of the promising approaches to improve mechanical properties of structural materials is the 
formation of an ultrafine-grained (UFG) structure with a grain size less than 1µm [1]. In comparison to 
coarse grained materials UFG materials exhibit enhanced static and cyclic strength, hardness and wear 
resistance [2]. Such combination of properties can reduce the dimensions and weight of parts while 
keeping their structural strength. This fact is especially important for titanium alloys. Providing low 
density, high specific strength and an excellent corrosion resistance [3], titanium alloys are used in a 
wide variety of aviation, aerospace, shipbuilding, automobile production. 

To obtain the UFG structure in metallic materials severe plastic deformation at low temperatures 
(typically below 0.5 Tm) is usually used [1]. One of the main parameters of severe plastic deformation 
which can influence on the kinetics of ultrafine-grained structure formation is strain path. In 
comparison to unidirectional deformation, change in the load direction during large straining can 
considerably increase both the kinetics of microstructure refinement and the final structure 
homogeneity. One of the well-known ways to use this approach is multidirectional forging (MF); this 
method shows particularly good result in case of two-phase titanium alloys allowing formation of a 

homogeneous microstructure with grain size of 0.4µm [4]. However MF has an essential fault 
associated with a relatively high laboriousness of the method. 

More efficient way to obtain the UFG structure in rod preforms is warm swaging [5]. Swaging 
consists in periodic compressions of a rod and reduction its diameter by split dies which 
simultaneously move along radial, rotational and axial directions relative to the axis of the rod. In this 
case the deformation has a quasi-hydrostatic compression scheme. This gives a possibility to deform 
materials with high accuracy to large strain without fracture. 

The aim of the present work was to study the formation of UFG microstructure of Ti-6Al-4V 
titanium alloy in both longitudinal and transversal sections during swaging in the temperature range 

680-500 °C with the total strain of ε = 2.67. 
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2. Materials and procedures 
The program material was a two-phase Ti-6Al-4V alloy with a nominal composition (in wt%) of 

6.3 Al, 4.1 V, 0.18 Fe, 0.03 Si, 0.02 Zr, 0.01 C, 0.018 O, 0.01 N, Ti bal. It was received in the form of 

a hot rolled 60mm diameter 500 mm length rod with a β-transus temperature (at which α+β→β) of 

995 °C. The heat treatment of the rod before swaging included water quenching from 960 °C. 

Then the diameter of the rod was sequentially reduced via swaging from 60mm to 35 (ε = 1), 21  

(ε = 1) and 15mm (ε = 2.67) along the following schedule: 

1) Ø60→ Ø35 at T=680 °C, (ε = 1); 

2) Ø60→ Ø35 at T=680 °C and Ø35→21 at T=500 °C, (ε = 2); 

3) Ø60→ Ø35 at T=680 °C and Ø35→15 at T=500 °C, (ε = 2.67), 

where ε is a true strain determined as , in which F0 and F are the initial and final area of 

the rod, respectively. At each step the rod was sectioned in half for microstructure examination. 
Before swaging the rod was heated to the required temperature in a furnace and then it was 

deformed using cold dies in multiple passes with a reduction ~ 5mm per pass. After deformation the 
rod was cooled in air.  

The evolution of the microstructure in the longitudinal and transversal sections was examined using 
a transmission electron microscope (TEM) TECNAI G2 F20 S-TWIN and a scanning electron 
microscope (SEM) Nova Nanosem 450 equipped with an orientation imaging microscopy (OIM) 
system. 

Mechanical properties of the swaged alloy were evaluated via tensile test at room temperature 
using flat specimens with the gauge dimensions of 1.5×3×16 mm. Technological properties (modeling 

of superplastic forming) were evaluated by compression tests of cylindrical specimens ∅14×20mm in 

the interval 600-700 °C at a strain rate of about 10-3 s-1. Flow stress was determined at 20% of strain. 
 

3. Results and discussion 

The microstructure of the alloy in the initial condition (water quenched from 960 °C) composed of 

primary globular α-grains with a mean size of 7µm and acicular α'-martensite within the former β-

grains (figure 1a). During heating and soaking at deformation temperature α'-martensite decomposed 

with formation of α+β lamellar microstructure with a thickness of lamellae less than 0.2µm. 

After swaging to ε = 1 at 680°C slightly elongated in the deformation direction particles of α-phase 

and very fine lamellar/globular α+β structure were observed in the longitudinal section (figure 1b). In 

the transversal section α-particles had an equiaxed shape of ~5µm in diameter (figure 1c). Increase in 

strain to ε = 2 at lower temperature 500°C resulted in the formation of a microstructure in which α-
platelets were oriented along the metal-flow direction (figure 1d). Substructure was observed within 

elongated particles of α-phase (insert in figure 1d). Fine α+β lamellar microstructure was mainly 

transformed into globular one. Particles of α-phase in the transverse section were found to be folded 
and kinked in different directions forming a specific ‘curly’ type of microstructure that also is typical 

of extruded or drown conditions [6, 7]. The thickness of the elongated α-particles was found to be 

~2µm (figure 1e). Warm swaging to the true strain of ε = 2.67 led to further microstructure refinement 
and to homogeneity improvement (insert in figure 1g). In the longitudinal section (figure 1f) SEM 
image shows a lamellar morphology of the microstructure. The thickness of lamellae decreased from 4 

to ~ 2µm. In the transversal section curved α-particles became also shorter and thinner (about 1.5µm, 
figure 1g). 

6th International Conference on Nanomaterials by Severe Plastic Deformation IOP Publishing
IOP Conf. Series: Materials Science and Engineering 63 (2014) 012070 doi:10.1088/1757-899X/63/1/012070

2
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Figure 1. SEM image of  
Ti-6Al-4V microstructure  
(a) in the initial condition; 

after deformation (b, c) ε = 1; 

(d, e) ε = 2; (f, g) ε = 2.67; 
(b, d, f) in longitudinal section; 
(c, e, g) in transversal section 
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EBSD map in figure 2a taken from the longitudinal section of the specimen swaged to ε = 2 shows 

heterogeneous microstructure consisting of α-particles elongated along the deformation axis 

alternating with areas of fine globular α- and β-grains or subgrains of about 0.5µm in diameter. The 

thickness of the elongated α-particles was 2-4µm. Developed substructure was observed within both 
lamellae and fine grains; the fraction of low-angle boundaries was 77%. The volume fraction of the 

fine-grained structure was found to be 0.4. Swaging to the total strain of ε = 2.67 at 500 °C (figure 2c) 
resulted in the formation in the longitudinal section of a homogeneous globular UFG microstructure 

with the grain size of 0.4µm. After swaging a typical axial texture was formed in the α-phase of the 
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alloy when the basal (0001)α plane normal direction is aligned with the transverse (radial) directions of 

the rod for both ε = 2 and 2.67 (Figure 2b and d). 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. EBSD maps of microstructure after deformation in longitudinal section: (a, b) ε = 2; (c, d) ε 
= 2.67; (a, c) in longitudinal section; (b, d) in transversal section. 

 

   
 (a) (b) (c) 

Figure 3. Microstructure of Ti-6Al-4V alloy in longitudinal section: (a) ε = 1; (b) ε = 2; (с) ε = 2.67. 
 

Microstructure evolution during deformation was further elucidated by transmission electron 

microscopy (figure 3). Microstructure of the alloy after ε = 1 at 680 °C (figure 3a) consisting of fine-

grained mix of (α+β)-phases, elongated α-particles with high dislocation density and thin α-lamellae 

divided by β-layers. After strain ε = 2 α-lamellar and (α+β)-globular structure with the size of 

(sub)grains of 0.5µm was observed (figure 3b). Some particles of α-phase contained low- and high-
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angle boundaries. Increase in strain resulted in further microstructure refinement and increase in the 
homogeneity (figure 3c). Moreover, in contrast to SEM image (figure 1f), TEM investigation revealed 
not only considerable microstructure refinement. At higher magnification the microstructure consisted 
of equiaxed grains/subgrains with a mean size of about 0.4µm. Almost dislocation free grains 

observed in the microstructure after swaging to ε = 2.67 might suggest development of discontinuous 

dynamic recrystallization in phases. Processes of recrystallization in elongated α-particles and 

spheroidization in lamellar (α+β) areas resulted in formation of a homogeneous microstructure 
without noticeable elongation. Those processes were most likely intensified due to changing in 
deformation path, which is proper to swaging. For example very similar microstructure was obtained 
via multiaxial forging (MAF) [4, 8]. However heritable preferred orientation of boundaries along the 
metal flow direction revealed itself as a lamellar microstructure at low magnifications. 
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Figure 4. Engineering stress–strain curves of swaged alloy (a) tensile tests at room temperature; (b) 
and (c) compression test at elevated temperature 

 
The mechanical properties of the alloy after swaging are shown in figure 4a. Tensile tests show 

very high strength of the alloy (1200 MPa) already after deformation to ε = 1 at 680°C. For 
comparison this is a maximum value which can be attained in the alloy via strengthening heat 

treatment (water quenching and ageing). The tensile strength after ε = 2 or ε = 2.67 is 1315MPa in 
both cases. This is the same value as that obtained in Ti-6Al-4V alloy earlier by warm MAF [4, 8, 9]. 

Meanwhile some difference in the tensile elongation of specimens swaged to ε = 2 (δ=9%) or ε=2.67 

(δ = 10.5%) is observed. This difference may be caused by increase texture intensity in the largely 
deformed rod (figure 2 b and d) [6]. It should be noted an ability of swaged alloy to strain hardening. . 
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It is not typical of USG structure produced by severe deformation in which flow instability and early 
necking is usually observed in the very beginning of strain [2]. 

Technological properties of the UFG alloy were evaluated by compression tests at elevated 
temperatures (figure 4b); the aim of this trial was (i) workability of the alloy at relatively low 
temperatures and (ii) to compare the behavior of the material under conditions which are known to be 
superplastic for the UFG alloy produced by MAF [10]. Stress-strain curves of the UFG alloy at 

temperatures 600-700 °C show a typical of superplastic flow steady-state-like stage after 5% strain 
suggesting very good workability of the material at these temperatures. Figure 4c shows flow stress 
(was determined at 20% of strain) of the UFG alloy as a function of temperature. However the value 

of flow stress of the alloy after swaging to total strain ε = 2.67 is considerably higher than that of UFG 
structure (150 nm), produced by warm MAF [10]. Nevertheless the flow stress of the alloy at 650 and 

700°C (250 or 150MPa, respectively) is reasonably low to consider swaging as an effective way of 
producing UFG preforms with good workability. 

 
4. Summary 

Microstructure evolution in Ti-6Al-4V alloy during warm swaging in the interval 680-500 °C with 

the total strain of ε = 2.67 was study. A homogeneous globular microstructure with a grain size of 

0.4µm in both longitudinal and transversal sections forms as a net effect of deformation. This 
microstructure yields the tensile strength of 1315MPa and the tensile elongation of 10.5%. Ultrafine-

grained Ti-6Al-4V alloy produced by swaging exhibited good workability at temperatures 600-700 °C. 
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