ON THE DISTRIBUTION OF NORMS OF PRIME IDEALS OF A GIVEN CLASS IN
ARITHMETIC PROGRESSIONS

S. A. Gritsenko* UDC 519.68

Let C be a class of ideals of the ring of algebraic numbers of an imaginary quadratic field. Let I and q be relatively
prime integers, 1 < q <log™ x, and Ay > 1. An asymptotic formula for the number m1(x,q,1,C) of prime ideals
belonging to the class C whose norms do not exceed x and lie in an arithmetic progression is obtained in this paper.
Bibliography: 6 titles.

INTRODUCTION

In solving additive problems with prime numbers by the circle method, the law of distribution of prime
numbers in arithmetic progressions plays an important role. For example, the following formula, known in the
literature as the Siegel-Walfisz formula, is frequently used:

Li
7w, 4,1) = —— + Ofwe™*VFET), (1)
e(q)
where w(z,q,l)= > 1,Liz= ; 15?17 [ and q are integer, relatively prime numbers, 1 < ¢ < log™ z, 41 > 1,
P
p=1 (mod q)
and ¢ > 0 depends only on Aj.
For example, see [1, p. 154] for its proof.
Under the same conditions on [ and ¢, a formula similar to (1) is valid for the function my(z,¢,1) = >, 1,

N(P)<w
N(P)=1(mod q)
where summation ranges over prime ideals P of the ring of integral algebraic numbers of an imaginary quadratic
field and N(P) is the norm of an ideal P.

If the discriminant of the field does not grow with a, then the derivation of the formula for m (z, ¢, ) coincides
in essence with the derivation of the formula for n(z, q,1).

In the problems on the representation of prime numbers by quadratic forms, an asymptotic formula is needed
for the number of prime ideals the norms of which do not exceed x and lie in an arithmetic progression, but the
ideals themselves belong to a certain fixed class of ideals. The present paper is devoted to the derivation of such
a formula.

If the quadratic field contains many classes, then our problem differs significantly from the problem of obtaining
the asymptotics for 71 (z, q,1), because the problem of whether an ideal belongs to a given class of ideals does
not reduce to the problem of whether the norm of an ideal belongs to a residue class with respect to a certain
modulus (see [2, p. 271]).

We sketch the line of argument. Let C be a class of ideals, 71(z, ¢,[,C) = > 1, Abeideal classes, X(.A)
FecC
M(P)=1 (mod q)
N(P)<a
be characters of the ideal class group, X be a principal character of the ideal class group, h be its order, x(n)
be Dirichlet characters modulo ¢, and 1 be a character of the quadratic field. Let ({,¢q) =1, 1 < ¢ < logA1 z,

A1 >1,and ¢ > 0. Then

1 1
mi(e, .10 = > 1+ o) DX (1 xa)x(p)

NFPE)ng XFX0 p<x
- Z X(C) Z x(1) Z X(P)x(N(P)) + O(yzlogz). (2)
hield) X#Xo XFXo N(P)<z

*Belgorod State University, Belgorod, Russia.



The formula

Z 1= le J Ot —eVEET) (¢ )

pPeC
N(P)<z

is well known (for example, see [3, Chap. 7]).
Let x2 be a Dirichlet character modulo ¢. It is well known that

ZXZ

{ Li z + O(ze cV8®) if y, is a principal character,
px

O(ze—c Vo) if x2 is a nonprincipal character

(for a proof, see, for example, [1, Chap. IX]).
Hence we have

- Coxa) . Ry
th(q)X;OX(1)§(1+X1(19))X(19)—hw(q)x(q,D70)le+o(xe VIoEE)

where x(¢; D,0) = 1if D | g and x(q; D,0) = 0 if D { ¢, where D is the modulus of the character x; equal to
the absolute value of the discriminant of the quadratic field.
By formula (2), we obtain

1+X(q;D7O)X1(1)Lix+ RIRGD IR X(P)x(N(P)) +O(ze V%7). (3)

7T1($7 q, l7C) -
hepla) 3 XAxo  N(P)<z

Now, to obtain an asymptotics of the function m1(z, ¢,[,C) it is sufficient to estimate the sum

S X0 Yxn S X(PX(N(P)).

X#Xo X#Xo0 N(P)<z

This problem is solved in the present paper, the main result of which is given in the following theorem.

Theorem 1. Let X be a nonprincipal character of the ideal class group of the ring of integral algebraic numbers
of an imaginary quadratic field Q(\/_), and let x be a nonprincipal primitive Dirichlet character modr, 1 < r <
log x, Ay > 1. Then the estimate

Z X(P)x(N(P)) = O(OE exp(—c (logx)m_l))
N(P)<z
is valid, where ¢ = ¢(A4;) > 0.

The proof is based on the method of generating functions. Necessary information about the properties of the

Dirichlet series
(s, X, x) ZX A)N(A)™?,

where summation is taken over all integral ideals A, is contained in the lemmas below.

We use the following notation in the paper:

X is a character of the ideal class group of the ring of integral algebraic numbers of a field F' = (@(\/3)7
where d is a negative square-free number, h is the order of this group, ép is the discriminant of the field I, and
D= —p;

x1 is the character of the quadratic field F' defined in the following way:

(%) if d=1 (mod4),

Xi(n) = )z ”( |) it d=3 (modd),

(1)t 2t £t (|Z_/|) it d=2(mod4), d— 2d;




1 if m=a (mod q),

x(m; g, a) = {

0 otherwise;

G(r,u,m) ZZeXp (u(am? + bmn + en?) + mny + nny))

m=1n=1
is a double Gauss sum associated with integer, relatively prime numbers » and r, a quadratic form am? + bmn +

en?, and an integer vector 7 = (m >; aln)=ax(n)= >, X(A4), as(n) = ax,(n).
n2 A, N(A)=n

LEMMAS

Let X is a nonprincipal character of the ideal class group. Let r and u be integer, relatively prime numbers.
For Re s > 1, we define the Dirichlet series F'(s,r,u) and F(s,r,u, A) by the relations

(s,r,u) ZX 27”uN(A)N(A)f‘“’? (s,r,u) ZX (s,r,u, A),

where

uN(A)
(s,r,u, A) = g ETTTTN(A) T

AcA

Let A be a class of ideals, B be an ideal of the class A~!, and £ represent integral algebraic numbers of the
ideal B. It is known that if £ ranges over all nonzero numbers of the ideal B, then the numbers N((g)) range over

the values of the norms of integral nonzero ideals of the class A, and in the sequence N((E)) the norm of each

nonzero ideal of the class A occurs precisely two times (for example, see [4, Chap. 21]).

Define a binary quadratic form with integer coefficients Q(m) = % = an? + bnyng + cn3, where 7@ = (Zl >
2

is the vector of coordinates of a number £ in an integral basis of the ideal B. Let Q1(7) = an3 — bnina + cn?.
Lemma 1. 1. The function (—W)SF(S)F(sm?u?A) is analytic on the whole complex plane, except for the
point s = 1, at which it has a simple pole with residue %G (r,u,0).

2. For Re s < 0 the identity

1—s
(ot o) - Y@y S

3 1
D) D)o, ) — 3 (Y x

=]

3|

£

is valid.
3. The function F(s,r, u) is entire for any r and u.

For a proof, see [5].

Corollary 1. Let characters X and x be nonprincipal and x be primitive modulo r > 1. Then
(5,X,%x) ZX A)N(A)~®

is an entire function.

Proof. The following formula is valid:

F(s, X, x) =

\HH

S?”U

u:l

where 7 is the Gauss sum associated with the character ¥, Re s > 1. Now the corollary follows from Lemma 2.



Lemma 2. Let ¢ be an arbitrary number in the interval (0, 0.001), and let » and u be integer, relatively prime
numbers, r > 1. Let x be a primitive Dirichlet character modulo r.
Then the estimates

Z a(n)e?™ 5 = O($%+€T§)7 Z a(n)x(n) = O(zz4rs)

n<e n<e

are valid.
Proof. The first estimate was obtained in [6], and the second estimate is a consequence of the first one and the

T ;U . .
known formula x(n) = % 3 x(u)e?™ % where 7 is the Gauss sum corresponding to the character X.
u=1

Lemma 3. The following asymptotic formula is valid:

3 aoln) = eox + Ot ),

(n,0p)=1
n<e

where c¢g > 0 and = is an arbitrary positive number.

The asymptotic formula is derived essentially in the same way as is the estimate in Lemma 2. The difference
is that the generating function

>0

S aotmn = L1 —p )L x1)
n=1 plor
(n,p1)=1

has a simple pole with residue ¢y = [] (prl)L(L)ﬁ) at the point s = 1, which implies the appearance of a
plor
principal term.

Lemma 4. Let = be an arbitrary number such that 0 < £ < 0.001. Let X be a real nonprincipal character of
the ideal class group of an imaginary quadratic field Q(\/E), let x be a nonprincipal primitive character modulo
r. If the character x is real or the character x?x1 is principal, then there exists a constant ¢ > 0, dependent only

on ¢, such that
c

[£7(1, X, )] > RN

Proof. Let Res > 1. The following relations are valid:

F(s,X,x)= [[ (1 = X(P)X(N(P))N(P)~*)""Fi(s, X, x)

and
Fi(s, X,x) = 11 (1= X(P)x(pp =) 11 (1=x*(pp )"
(Pép)=1, N(P)=p (P,6p)=1, N(P)=p*
x1(p)=1 x1(p)=-1

This implies that it is sufficient to estimate Fi(1, X, x) from below.

The conditions of the lemma imply that the coefficients of the Dirichlet series I (s, X, x) are real. Indeed,
if y is a real character, then this is obvious, because X(P) € R. Let x?x1 be a principal character. Then
X2(N(P))x1(N(P)) can take only the values 0 or 1. Therefore if N(P) = p and x1(p) = 1, then x*(p) can be
equal either to 0 or to 1, i.e., x(p) can be equal either to 0 or to 1, or to —1; if N(P) = p? and x1(p) = —1, then
x%(p) in this case can be equal either to 0 or to —1.

For % <t < 1, consider the function

H(t) =3 (30 X(BIX(N(B)) (N (4)¥ D

A B|A



P2~ is the canonical decomposition of an ideal A into the product of prime ideals, then
+ X (Py)x™ (N(F)));

(A ranges over integral ideals and B ranges over the set of divisors of A)

If A=Pypye-.
D XBIXNB)) = [T+ X(P)X(N(P)) +
BJA j=1
therefore,
SXBNNBE) 0, Y X(BX(NB) > 1.
BlA B|A?
Hence
H(t) >3 3 (N(A)NA” = Zao
A
c \/_ —1/6—e1 c
: +o<( ORE -

Using Lemma 3 and the formula of partial summation, we have
>0 >0 2
H(t)fco/ [ dx+0</ 2/3+€1exp<—x In— ) >
0 1 t 2. /In
(we assume that ¢ is sufficiently close to 1); 0 < g1 < 0.001. We transform H(t) in the form

f: b(m i -
m=1 n—=1

?

2(m).

m) = a(m)x(m)xi(
Using Lemma 3 and the formula of partial summation, we obtain
1 o
4 cot™ — co/ tmzder/ Ro(z)mIn ttmzdx
0 1

where b(
> )
n=1

where Rg(z) is the remainder in the asymptotic formula of Lemma 3
Hg(t) + Hg(t)7

tmn —
mln%

Thus,
X
H(t) = COM FH(t) —
In L 7
where -
t)=co Z b(m)t™, Ha(t) = co/ m)t"" dx,
m=1
and
Hs(t) = o(/ |Ro()]| Z m)mIn tm|dx>
1
We estimate Hy(t) and Ha(t). Let 0 < = < 1. Make use of the formula of partial summation and Lemma 2
f: b(m)t™* = / Z m)dt"" = (r% /OO u7%+€1t“zdu) =0( (zln ! 7_7817"% :
0 t
m=1 m<u
Hence we obtain
14— 1\~
Hi(t) = O((xln ;) ; lr%)7 Ho(t) = O((xln _) ; lr%)

_ _/OO S bm) (1 + uz ey
1

f: b(m)mit™*
m<u



r [ ite 1 wx 1y—3-= 7
=Oflrs u3 1<1+uxln¥)t du :O<<xln¥) 7"6).
0

Estimating Ro(z) by Lemma 3 as Ro(z) = O(z3T7), we arrive at the relation

Thus,

We take

_ 7
t=1—cgr T-%1,

C1

1
where c3 >0 is small to an extent that > 2¢or/5(In ;)*1/3751.

In %
Then the inequality
F(L,X,x) > cyr 3575951
is valid, where ¢4 >0. We put e=>50g;, completing the proof of the lemma.

Lemma 5. For any X and x, in the domaino > 1 — logfl(r|t| -+ 3r) the following inequality holds:
|F (5, X,X)| < eslog?(r[t] + 3r). (4)

Proof. Let s=c +it,o 21— logfl(r|t| + 3r). Since the character X is nonprincipal, the function F'(s, X, x) is
represented by the Dirichlet series F'(s, X,x) = Y. a(n)x(n)n"* (see Lemma 2) in the half-plane Res > 1.

n=1

Let N = [(r|t| + 3r)?] + 1. By Lemma 2 and the formula of partial summation, we have

>, s > e rlt|+ 3r)7/6
3 a(m)x(nn® = s / Y aln)x(n)e e < %N <1
n=N+1 N N<n<z

N
The sum > a(n)x(n)n—° is estimated with the help of the inequality |a(n)| < 7(n):
n=1

N N 5 N 5
Za(n)x(n)n” < (Znig) < (Z’rfl) < log® (r|t| + 3r).
n=1 n=1 n=1

Corollary 2. Let the assumptions of Lemma 4 be satisfied. Then there exists a constant ¢y = ¢1(¢) such that
F(s,X,x) #0 in the circle
|s — 1] < eyr 35 % log > (4r).

Proof. Let |s—1| < 265167"*3'5*5 In"? 47, where ¢ is a constant from Lemma 4 and ¢s is a constant from Lemma, 5.
Then

F(S7X7X) - F(17X7X)+ an(s - 1)n7

n=1
where Pl X.x)
1 s X

b, = — A ,

27ri /C (s —1)nt1 ’

C is the circle of radius In~ ! 4r with center at the point s = 1.



Since the inequality

o>21-— L =>1- !
In4r In(r|t| + 3r)
is valid for any s from C, we have
[br] < e In?t" 44
in view of (4); consequently,
= = = c " (In4r)nt?
bn(s—1)"| < bu||ls — 11" <
nz::l (s ) nz::l| I|s | C5 nz::l <C+ 2C5> (3-51€)n(In 4r)3n
< 3.5 ¢ _ C,-35-¢
s nz::l (c + 2¢x5 > 27"
Thus, for |s — 1] < 265167"*3'5*5 In2 47 the inequality
[P (5, X,201 > [F(L X201 = |3 bals = 1) 2 5r %772 >0
n=1

is valid, as was to be proved. [

F(s)
F(so)

Lemma 6. Let F(s) be a function analytic in the circle |s — so| < r, F(sq) # 0, and let |
circle.
If I'(s) # 0 in the domain |s — so| < 3, Re (s — s0) > 0, then

| < M in this

F'(s0)
a Re > ——InM,
(a) Flso)
/
) Re 100 S AL Re 7
F(so) T 50— p

where p is any zero of F(s) in the domain |s — so| < §, Re (p—s0) <0.
For a proof, see, for example, [1, Chap. VI].

Lemma 7. Let ¢ be an arbitrary number satisfving 0 < £ < 0.001, s = o + it.
There exists a constant dy > 0, dependent only on ¢, such that F(s,X,x) # 0 in the domain ¢ > 1 —
W, where
B { max(In?(r[t| + 3r), 2¢; 1357 In® (41)),
L (r|t] + 30):;

we take the upper formula if the character y is real or the character x>x1 is principal, and the lower formula
otherwise; ¢y is a constant from Corollary 2.

Proof. Consider the function F'(s, X2, x?). If the character X? is nonprincipal, then, by Corollary 1, this function
is entire. If the character X? is principal (the character X is real), then the relation

F(57X27X2) - L(57X2)L(57X2X1)

holds. This implies that if X is a real character, then F(s, X?,x?) has a simple pole at the point s = 1 either
if the character x is real, or if the character x?xi is principal. First let either the character x be real, or the
character x2x1 be principal.

By Corollary 2, we may assume that

c1
| > ———.
d 2r3-5+2 In® 4
Indeed, if

C1
2r3-5+¢ In® 45

C1
2r35+€ In® 4p”

2l <

o —1] <



then
c1

.
r3-5+¢ In° 4y
and F(s, X, x) #£0.

Therefore, if F'(s, X, x) =0 and

R ——

S 9p35+e I 4y

then
c1

235 te I 4y
(we used the fact that the function F'(s, X, x) does not have zeros to the right of the unit line, because it has an

Euler product).
Let p = o + it be a zero of the function F'(s, X, x),

o<1

(&3] X
> ———ea— o=1-—""——— 0<z2<],
d 2355 P 4y’ Vin(V + el0) *

V = max(In”(r|t| 4 3r), 2¢; 1357 In® (4r)).

We need to prove that z > dg > 0.

Let
Yt 4z
so=09+1 o) = .
0T T YNV el0)
Consider the circle of radius v = % with center at the point sp. Since,
c
- <t <2k,

vV —m—————
= op3.5te |t 4y

it follows that 1 does not lie in the circle of radius v with center at the point sy = oo+ 2¢t. Therefore the function
F(s,X?%,%x?) is regular in the circle |s — 51| < v.

We estimate ——L— from above:
[F(s0,X,X)]

1

[F(s0, X, x)| S H(l +N(P)™7) < H(l +p77)? < P og) < (09— 1)72

P p

This estimate and inequality (4) imply that

LX) | 2 y=2 el <
807X7X)‘\M OM2(r|t] + 3r)(00 —1)"2) for |5 — s < v,

F 7)(27 2 B
2) ‘M‘SMO(lnz(r|t|+3r)(ao—1) 2) for s —si| <.
Note that |p — so| < v/2. Indeed,

N 5z < 5 < 1 v
- Vin(V + el0) = Vin(V + el9) Sy 2

|P—50|

We apply Lemma 6, putting first F'(s) = F(s, X,x) and then F(s) = F(s, X?,x?):

F'(sp Xx)} 4 1
Re¢ - ———— 2>, < —InM — Re
{ F(s0, X, x) v S0 —p

?

F'(s1, X%, x%) 4
Red — =~ 02 XL %
{ Fls, X200 St



We estimate In M from above. We have

In?(r|t| + 3r)
2

M < eq VZIn?(V 4 €'9),

where c¢g is a constant. Next,
I?(rft] +3r) KV KV 4 e (V4 %) < (V 1)

therefore,
(V + 105

M<06 2 )

M <5V +el% —2Inz + ¢, (5)
X

where ¢7 is a constant.
Let p(s) = ¢(s)L(s, x1) be the Dedekind zeta function of the field F'.
The following inequality holds:

(p(oo) } { F/(Oo+it7X7x)} { F/(Uo+2it7X27X2)}
0<3¢ — +4< — Re . + < —Re a .
{ Cr(on)) Flog+1it, X, x) F(og + 2it, X2, x?)

Using the relation —giggzg = (00 —1)"' +O(1) and the inequalities of Lemma 6, we derive that

1
0<20IM — —In(V +e'%) + g,
20x

where cg is a constant.
Hence inequality (5) implies that

1
O<09—171<% Jr409£lng£)7 (6)

where cg is a constant.
Since lim zlnx = 0, we have just proved that x > dp > 0.

z—40

To complete the proof, it is necessary to verify that the function F(s, X, x) does not have zeros on the unit
straight line. Assume the contrary, i.e., F'(1 +it, X, x) = 0 for [t| > sasdymgr

Let sp = 1+ Vln(%—r) + it, where z is an arbitrary positive number, v = V~1: then |p — so| < v/2,
where p =1+ t.

Next, repeating the above argument once again, we arrive at inequality (6), which holds for any positive z.
Passing to the limit as 2 — +0, we obtain a contradiction, which proves the fact that F'(1 +dt, X, x) # 0 for ¢
real.

The case where the character X is complex or X is real, x is complex, and x?x1 is nonprincipal is considered
similarly. Then the function F'(s, X?,x?) is entire, and in choosing the parameters, we need not verify that the
point s = 1 does not lie in the circle |s — s1| < v.

Putting V = ln2(7"|t| +3r) and v = V! and repeating the above argument, we complete the proof of the
lemma. O

Lemma 8. Let T > 2, r <log™ T, A; > 0 be a constant, V; = lnz(rTJr 4r) + 201717"3'5+€ 1n3(4r), where ¢y is a
constant from Corollary 2 and dy is a constant from Lemma 7. Then in the rectangular

do
= —— < < <
I {s|1 3‘/1\Res\27 |Ims|\T}7
the estimate Prls Xox)
S, » X B
— ' — O] rr
Fls X, Clog )

is valid, where By = B1(A4;) > 0.

Proof. Consider the rectangular

2d
M ={s | 1- 22 <Res<3, |[Ims <T+15.
Vi



By Lemma 7, F'(s, X, x) # 0 for s € Ty, and thus the function log F'(s, X, x) is analytic in the domain IT; (by
log 2 we mean the principal branch of the logarithmic function).

Let s € II. It is easy to see that the circle of radius 3‘1—‘31 with center at the point s is contained in the domain
II;. By the Cauchy formula, we have

Plis, X, x) 1 / log F'(w, X, x) ,

B - w

Fis Xon)  2mi)o (w—sp
where C' is the circumference of radius 3‘1—‘31 with center at the point s.

Using Lemma 5, we have
|log F'(w, X, x)| < log|F(w, X, x)| + 1 < loglogT
(we have used that In(rT + 3r) < log T, because r < log™ T' by condition).

Thus,
‘ P'(s, X,x)

S et KA Vi loglogT < logP T
F(s, X, x) < Vrloslog B los L

d
‘ < loglogT‘/ 71”2
o (w—s)

as required. [

PRrooF oF THEOREM 1

It is sufficient to estimate the sum

S X(P)(N(P)),

N(P)<z

where X is a nonprincipal character of the ideal class group and yx is a primitive Dirichlet character modulo r,
1<r< logA1 x.
Let

log N(P) if A=PF and P is a prime ideal, k > 1,
A (A) = { )

0 otherwise.

From the formula of partial summation, we have

\ 3 X(P)X(N(P)‘<<‘ S A (AX (AN o &+ VEloga,

N(P)<z N(A)<y

where y is a number in the interval (y/z, z| such that the modulus of the sum Yonaycy M(A)X(A)X(N(A)) is
maximal.
We estimate the last sum. We apply the Perron formula (for example, see [1, p. 75])

S M(AX(AN(N(A) = o /:HT ( - M) %ds + 0(3“;%)7

N(A)<y 2mi —iT F(S7 X7 X)

where b =1+ L and 7' = exp(logx)ﬁ_l.
Let Vi = In®(rT + 47) + 2¢; 73542 In®(4r), where ¢; is a constant from Corollary 2 and dp is a constant from
Lemma, 7.
Since, by Lemma 8, in the rectangular I = {s | 1 — 3‘1—‘31 < Re s <2, |Im s| < T} the function —

F'(5,X,x)
F(s,X,x)

F'(5,Xx)
F(s,X,x)
is analytic and satisfies the inequality | — | < logP' T', we can use the Cauchy theorem and move the

interval of integration to the left:

1

1 by +iT F/( 7)(7 ) s —
N(ZA):@ANA)X(A)X(N(A)) = o A ( - 7F(;7 Xj:) >y?ds + O(y exp (—O.5<10g$)7))7

do

where b =1 — 3_V1



We estimate y®' from above. It is easy to see that
Vi < 010(1 —+ Cfl) 10g4A1+2 T < 010(1 + Cfl) log% x,

where ¢19 > 1 is an absolute constant.
Therefore, there exists a constant ¢;1 > 0 such that

Yy <2t < xexp(—cll(logx)%).

Making use of this inequality and the inequalities

F/ X by +iT d
‘_M‘<<log31 j—‘7 / M<<log1—'7
b

(s, X, x) T
we obtain by .
[ A F'(s, X.x)\ ¢ AT
o ~Foxag ) Olmewe (e(lozs) ).
27 Jy, T ( F(s, X,x) ) s ’ SN
ie.

1

> MAXANNA) = 0(rexp (~e(togz) 7)),

N(A)<y
where ¢ > 0 is a constant. Theorem 1 is proved. [
Corollary 3. Let [ and ¢ be two relatively prime numbers, 1 < g < logA1 xz, and A1 > 1. Then the asymptotic

formula 1
1)« SO 10 oo (o ker) ™))

is valid, where ¢ = c¢( A1) > 0.
This follows immediately from Theorem 1 and formula (3).

The paper was supported by Belgorod State University.
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