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INTRODUCTION

The integral relation
b

U@)/R@JV@M% c<y<d, (1)

a

is often used as a mathematical model describing the response u of some device (linear system)
with kernel (apparatus function) R to an input f [1, p. 225].

In practical experiments, the response at the device output is recorded at some discrete set of
points in the range of the variable y, i.e., y e {yr}, k=1,...,n,c =y <y < -+ <y, = d, with
some additive unknown error r. Thus the empirical data can be represented in the form

Vp = Up + Tk, (2)

where v, = v(y), ux = u(yx), K = 1,...,n, and the error is not related by any functional
dependence to the variable .

With regard to definition (1), the last relation can be represented in the form

v = (Ry, ) + 7, (3)
where the symbol (, ) stands for the inner product in the Euclidean space; in this case, we have

b

umﬁ/mmﬁmm, (4)

a

Ri(x) = R{ys, ), k=1,...,n. (5)

The problem is to compute (in general, approximately) the input on the basis of such empirical
data. Obviously, we deal with an approximate solution of a Fredholm integral equation of the first
kind.

Note that numerous methods has been developed for the computation of approximate solutions
of Fredholm integral equations of the first kind (e.g., see the bibliography in [1]). They are based
on various a priori assumptions and principles, whose adequacy cannot be verified in most cases.
The fact that the problem is ill-posed [2, p. 9] is the main reason for such a variety. The Tikhonov
regularization method [2, p. 128] is most known. It is based on reducing the original equation (1)
to another equation for which the computation of the approximate solution is stable under errors
in the response acquisition. Omitting details, we note that the implementation of this approach
results in serious difficulties in justifying the choice of the regularizing functional, including the
regularization parameter [3, p. 13; 4, p. 45]. Since the input is unknown, it follows that the choice
of quadrature formulas is also difficult [2, p. 152], which, obviously, has an unknown influence on



the resulting error. Since, in the case of quadrature formulas, the domain of the input is a prior:
discretized, it follows that the approximate solution is computed only at these discrete points and
interpolation is required for other values of the argument. The Tikhonov regularization method
is general enough to be used for the computation of stable (under errors in the original data)
approximate solutions of various classes of inverse problems. Possibly, this explains the fact that,
in the case of Eq. (1), it is hardly adequate in the sense of the correspondence of the computational
complexity to empirical information about the input and does not admit a transparent analysis of
the resulting error.

The aim of the present paper is to develop an adequate approach to the computation of ap-
proximate solutions of Eq. (1) (a basic approximate solution). This method should take account of
the character of empirical information on the input and should give computational procedures that
can be transparently analyzed from the viewpoint of the resulting error. Moreover, we consider the
possibility of taking account of the a priori information on the properties of the input or a priori
requirerr)lents on the properties of the approximate solution (an extension of the basic approximate
solution).

1. REPRESENTATION OF THE BASIC APPROXIMATE SOLUTION

By physical considerations, one can assume that the variables and functions occurring in (1),
including the kernel, are continuous and have a finite Euclidean norm (belong to the space L,).
The input with such properties can be represented in the form [5, p. 56 of the Russian translation]

f=5+ [ (6)
where the component f, is represented as
fi(z) = ZakRk(m)y (7)
k=1

ag, k=1,...,n, are real numbers, and the second component satisfies the orthogonality condition
(Rk,fg):(), k]il,...,n. (8)
If condition (8) is satisfied, then, by substituting the representation (6) into (1) and by taking
account of (4), we obtain @ = A&, where @ = (ug,...,u,)", @ = (04, ...,00)" , A = {au},

i,k =1,...,n, the symbol T stands for transposition, and
Using the notation ¥ = (v, . .. ,fun)T and ¥ = (rq, ... ,rn)T, it is convenient to represent the set of

relations (3) in the form ¥ = Ad + 7, which implies that the empirical data on the response do not
contain any information on the second component of the right-hand side of the representation (6).
In other words, without additional a priori assumptions, the empirical data permit one to compute
only approximate values of the component f; of the input, which is naturally referred to as the
basic approximate solution.

It is also obvious that it is natural to use only linearly independent functions from the set { R},

k=1,...,n, in the representation (7). Thus the condition
L) = BiF) (10)
i=1
should be satisfied in the general case, where F; = Ry,, i = 1,...,m, m is the rank of the matrix A,
the functions of the set {Ry,}, i = 1,...,m, are linearly independent, and the related indexing set
is denoted by 1.
Therefore, one should retain only the rows and columns with indices k;, ¢ = 1,...,m, in the

matrix A and only the components with these indices in the vectors @ and ¢. By the Cauchy—
Schwarz inequality u;, = (f, 7)) < (f,f) (Fi, F), to diminish the influence of the error in the



response acquisition, it is advisable to eliminate the linearly dependent functions with minimum
norm in (5).

Therefore, when eliminating rows and columns from the matrix A, one should also permute
them so as to satisfy the inequalities

(EyE) Z (E+17E+1)7 i = 177m_17 (11)

i.e., the diagonal entries of the resulting matrix should be arranged in decreasing order.

Obviously, the elimination of some empirical data is, in a sense, filtering; moreover, the resulting
vector of response values admits the representation

Uy :Angr 1, (12)

where the unit index implies that the matrix and vectors, including the vector of error in the

response acquisition, are transformed in accordance with the above-described procedure.
Obviously, since the matrix on the right-hand side in (12) is nondegenerate, it follows that

empirical data determine a unique [similar to (10)] representation of the basic approximate solution

fl(m) = Zbka(LE), (13)
k=1
where o
Ab = . (14)
If the acquisition errors are zero, then the vector b= (b, ..., bn)T of parameters coincides with

the parameter vector of the representation (10) (neglecting computation errors).

2. ON THE COMPUTATION OF THE BASIC APPROXIMATE SOLUTION

One can readily see that the main problem is to find the numerical values of the parameters of
the representation (13) on the basis of equality (14). Therefore, one should find the rank of the
matrix A with entries (9) and the set of indices of linearly independent functions from the set (5),
which satisfy condition (11); this would allow one to form the matrix and vector occurring on the
right-hand side in equality (14).

Let C stand for the matrix obtained from A by permuting rows and columns in decreasing
order of the diagonal entries, and let ¢ be the vector with the corresponding rearrangement of
components in the vector ¥.

It readily follows from definition (9) that the matrix C' is symmetric and negative definite, and
its determinant is the Gram determinant [5, p. 68 of the Russian translation|. The upper corner
submatrices [6, p. 7] have the same properties. Therefore, by successively computing the upper
corner minors, one can find the zero minor of the upper submatrix of the minimum dimension ;.
On eliminating the row and column with the corresponding index from C', one can proceed to
the computation of the resulting upper minors until the next of them vanishes. This yields the
index ns of the following eliminated row and column of the original matrix, and so on. One should
simultaneously eliminate the corresponding entries in the vector ¢.

For the successive computation of minors, it is advisable to use the method of reducing a matrix
to the Gauss upper triangular form [7, p. 96|, which, together with the Gaussian inverse substitution
and with appropriate transformations of the vector of the right-hand side in Eq. (14) permits one
to find the solution of this equation.

By (9), the computation of the entries of the original matrix is reduced to the numerical inte-
gration, which can be performed with the use of quadrature formulas [4, p. 223] most precise for
each pair of functions in the set (5).

3. EXTENSIONS OF THE BASIC APPROXIMATE SOLUTION

The aim of the extension of the basic approximate solution is to define the component f, oc-
curring in the representation (6) in the form of some estimate fo. As was mentioned above, this is



possible only with the use of some a priori assumptions on properties of the input. In this case,

it is natural to require that this component of the extended approximate solution f = f1 + fg
of Eq. (1) be orthogonal to the basic approximate solution of the form (13), whose parameters

satisfy Eq. (14).
We set

= iszk(w), (15)

where the z;, are real parameters and G, is a set of real-valued linearly independent functions.

Let us derive conditions ensuring that the projection of (15) on the lineal [5, p. 15 of the Russian
translation| of the form (10) is given by relations (13) and (14).

Obviously, in this case, we have the relations

<Fk, Z — )o k=1,...,m,

i=1
which, together with (14), readily give an equation for the parameters of the representation (15):
PZ =1, (16)

where 2= (21,...,2,) " and P = {pys} = (F;,Gy), i,k =1,...,m.

Under the above-mentioned conditions, the matrix occurring in (16) is nonsingular. Therefore,
the vector of parameters of the sum (15) satisfies the relation 2 = P~17,.

Then, by taking account of relations (2) and (3), one can reduce the representation (15) to the

form o
f:fr+ff7 (17)

where the first term is determined by the error in the response acquisition, and the second term
(the regular part) is determined by the input:

fi@) = [ Bslfeds,  Blas) = 3 pilGua)Ri(s), (18)

and the p;,' are the entries of the matrix P~L.

Obviously, when choosing the function set in the representation (15), one should try to make the
regular part of the approximate solution as close as possible to the unknown input; i.e., the relation
f}(w) = f(x), a < x < b, must be valid in the ideal case.

Obviously, this identity is valid if and only if the kernel in the first relation (18) has the unit
eigenvalue and the corresponding eigenfunction coincides with the input.

By using the definition of the entries of the matrix in relation (16) and the representation of the
kernel B(z,s) in (18), one can readily prove the identities

b

Gr(a) — /B(x,s)Gk(s)ds, k=1,....m. (19)

a

In other words, each function occurring in the representation (15) and hence the representation
in the whole are eigenfunctions of the kernel B(x,s) of the form (18) corresponding to the unit
eigenvalue.

This fact allows one to use the a priori information on properties of the input, which is often
provided in applied investigations. Therefore, as basis functions of the lineal of the form (15),
one should use functions such that the norm of components of the inputs orthogonal to it forms a
small part of the total norm.



Note also that the computation of the entries of the matrix in Eq. (16) is related to the choice of
appropriate (for given function pairs) quadrature formulas, and the solution of this equation does
not go beyond the well-developed methods of linear algebra.

We should note one more quite general method for the extension of the basic approximate
solution. It is based on the use of a priori conditions in the form of variational principles

W(f) = extr, (f7 sz) = Uk i=1,...,m, (20)

where W is some nonnegative functional whose extremal is determined under given constraints
(the isoperimetric problem [8, p. 221]).

Note that if the squared Euclidean norm of the approximation computed for the input in (1) on
the basis of empirical data is to be minimized, then the solution of the variational problem (20)
gives the representation (13) and Eq. (14).

By way of example, we present the functional in the form of the squared norm of the first-order

derivative
b

W) = / (FO @)’ da. (21)

a

The use of the well-known approaches [8, p. 221] to isoperimetric variational problems allows
one to obtain a function providing the minimum of the functional (21) under constraints of the
form (15) occurring in (20), where the basic functions G, (z) satisfy the differential equations

CPx) =R, (x), k=1,...,m. (22)

In the computation of solutions of equations of the form (22), it is natural to use the boundary
conditions Gy(a) = Ry, (a) and Gi(b) = R; (b), & = 1,...,m. The following step is to solve a
system of equations of the form (16); for this purpose, one should first compute the corresponding
entries of the matrix.

Obviously, the implementation of all computations, including quadratures of integrals, does not
face any essential difficulties.
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