Peculiarities of soliton motion in molecular systems
with high dispersion

V. V. Krasilnikov" and S. E. Savotchenko
Belgorod State University, Pobeda St. 85, 308015 Belgorod, Russian Federation

In this work, features of propagating protons along molecular chain of hydrogen bonds are described from
position of soliton dynamics with taking into account interaction of first and second neighbors of a proton
sublattice. It is proposed extension of the model that is an endless chain of water molecules in which for-
mation of hydrogen bonds is due to participating one proton of every water molecule, a second proton no
participating in hydrogen bond and being confined by covalent bond of an oxygen atom. Nonlinearity is
due to peculiar properties of proton sublattice potential. The model used to obtain continual equations
which contain the spatial derivatives of the fourth order that is related with dispersion of longwave oscil-
lations. The availability of such a dispersion changes essentially dynamics of the molecular chain, which
allows of manifesting new peculiarities of propagating nonlinear excitations. It is shown there are two
new sorts of charge density excitations transferred by solitons determined as exact analytic dependences
in such a system.

1 Introduction Recently, the activities of theoretical describing different physical and chemical
processes have been increased with the point of the nonlinear dynamics view. Applying nonlinear differ-
ential equations with spatial gradients of the orders exceeding the second one is of a special interest [1-
4]. Such equations can occur in describing long wave oscillations of discrete crystal lattices taking the
nearest neighbors into account [5, 6]. In this work, it is represented considering peculiarities of propagat-
ing nonlinear excitations in a hydrogen bond molecular chain with interaction between the nearest and
second neighbor particles. Due to this interaction, the derivatives of higher order are in the continual
equations of motion. The presence of such derivatives of the order exceeding the second one causes
higher dispersion effects having new peculiarities of propagating the longwave excitations in the chain.

It is well known a proton conductivity is higher along hydrogen bond one-dimensional chains in cer-
tain crystal phase compounds (hard spirits, carbohydrates) by several orders than in a cross direction [7].
Besides it is known proton mobility in ice crystals is lower by only the one order than electron mobility
in metals [8—11]. The basic proposition of the ice proton conductivity theory is a proton can be trans-
ferred along the chain as two ion defects: hydroxonium ion H;O" and hydroxyl ion OH™ created by water
molecule dissociation due to transferring one of its protons to a neighbor molecule according to the reac-
tion scheme: 2H,OAOH +H;0O".

2 Model Following [12] we consider a water molecule endless chain where hydrogen bonds are
formed by one of protons of every water molecule and other proton of the water molecule does not par-
ticipate in a hydrogen bond and is held with an oxygen atom by covalent bond. The oxygen atom and
this proton are a hydroxyl ion. As result, the water molecule chain splits up by two subsystems: the basic
subsystem formed by hydroxyl groups and the proton subsystem.
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In a strain-free state of the chain, every proton participating in hydrogen bond is linked with an oxy-
gen atom by covalent bond in one side and by hydrogen bond in other side. Covalent and hydrogen
bonds change places after passing proton through a potential barrier. The potential energy of a proton
participating in hydrogen bond can be written [7, 11, 12] as:
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where Uy is a potential barrier height, #_ is a proton displacement from a barrier top, u, i$ minima posi-
tions of potential energy (see Fig. 1).
Hamiltonian of the system considered can be written as

H=H +H +H, 2)
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where H is proton sublattice Hamiltonian involving Eq. (1) and interaction of neighbor protons and next
(second) neighbor protons with interaction lattice constants a)f and a),f , respectively,
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where m is proton mass. The second term of Eq. (2) is Hamiltonian of the basic sublattice of hydroxyl
ions. Here, we limit ourselves by interaction of only the nearest neighbors with the lattice constant Y} [7,
12]:
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where p_is the relative displacement of hydroxyl ions, M is hydroxyl mass, Q) is the characteristic

constant of the basic lattice. The third term of Eq. (2) is Hamiltonian of interaction of hydroxyl ion and
proton displacements:

H,= 1Y p,(u; —u;) (5)

where A is a sublattice interaction parameter.
Further we limit ourselves studying a longwave approximation. For this, we suppose na—x, u,—u(x),

1
p,—p), Z—)— I dx in Egs. (3)-(5). Here « is an equilibrium distance between two neighbor hydroxyl
- a

ions. It corresponds to the Taylor series expansion of discrete equations (3)—(5). It was shown in the Ref.
[5] that taking into account interaction with the second neighbors in the one-dimension chain at transition
to the longwave approximation leads to appearing the spatial derivatives of the fourth order in the equa-
tions of motion and to redefining a velocity (and frequency) of proper sound waves. As a result of such a
correct transition to the longwave approximation, we receive from Eqs. (3)—(5) general continual Hamil-
tonian of the considered system:
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where u, u, u , p,, p are the derivatives over ¢, x and the second derivative over x, respectively, of the
functions u(x) and p(x). We explain the parameters of the considered system (see the Ref. [5]):
s; =a* (@} —4w;) >0 is the squared velocity of linear waves in the proton sublattice (“proton sound™);

b=a"'(16w; —w})/12 is the dispersion parameter in the proton sublattice; V, =a €, is the velocity of






and spirit molecules takes a form of the proton potential energy curve with two minima corresponding to
two possible proton equilibrium positions (see Fig. 1). Specific to our model is that we adopt influence of
the second neighbors besides the nearest ones on soliton motion in molecular systems. It is necessary to
note taking into account interaction between not only the nearest neighbors is needed for correciness of
the Taylor series expansion of discrete equations in deriving the continual differential equations of mo-
tion in the longwave approximation. Due to this, the obtained continual equations contain the spatial
derivatives of the fourth order that is related with dispersion of longwave oscillations. The availability of
such a dispersion changes essentially dynamics of the molecular chain, which allows of manifesting new
peculiarities of propagating nonlinear excitations.

Here are two types of charge density longwave excitations, which is principally different from an
excitation in the chain with interaction between only the nearest neighbors in the longwave approxima-
tion. The found excitations (see Eqs. (8), (9)) transfer a proton charge by a high enough velocity exceed-
ing the velocity of propagating wave in the linear chain. In the special case, when interaction of proton
and hydroxyl displacements is negligible (A<<1) the solution corresponding to the proton sublattice

describes the soliton to move with velocity ¥? =7 (1+1104/113/121), amplitude 4, = +2+/30/11 and
wave number x> = ,/a /11p . As seen from this: V>s,. It explains the high proton mobility along the mo-

lecular chains of hydrogen bonds in crystals of ice and hard spirits. The analogous phenomenon takes
place in the general case of interaction of proton and hydroxyl displacements.

Proton migration is equally determined by both proton sublattice displacements and hydroxyl sublat-
tice ones. The excitation velocities in the sublattices are equal at interaction of these displacements. So it
is enough to discuss one of two. No hydroxyl and hydroxonium but smeared areas of compression and
rarefication of the average proton density propagate along the chain. An effect of the smearing is a result
of collective nonlinear interactions in the system. This obeys a high stability of corresponding proton
migration.

The new peculiarities considered of propagating solitons in molecular systems with the spatial disper-
sion can be applied to molecular biophysics. These are important, for instance, to understand mecha-
nisms of proton transport in structured water channels of cell mitochondrions.
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