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ABSTRACT: Taking the system imperfection and the inhomogeneity of the diffusion
processes into account derives the extension of a simple chemical reaction model
proposed by Schlogl. The Fick equation modification makes the breakdown of the
ideality of diffusion. It leads to high-order spatial derivatives of a concentration in an
evolution equation. The system imperfection is also taken into account by the excess
Gibbs function of a regular solution. It leads to modification of the chemical potential as
well as to the dependence of a diffusion coefficient on a reagent concentration. The
formation of the spatial inhomogeneous structures being stable during the chemical
reaction under definite conditions is due to the breakdown of an ideal system. Certain
spatial inhomogeneous structures can exist only in the imperfection system and do not
appear in an ideal system. Three new types of spatial inhomogeneous structures
appear: periodic, quasi-periodic, and nonperiodic structures. The functions
characterizing concentration contain two terms. Note that in the ideal systems, the
quasi-periodic and nonperiodic structures cannot exist. This means that such a new
spatial structure formation is due to the system imperfection. The parameters
characterizing the system imperfection represent the coefficients at nonlinear terms and
a high-order spatial derivative in the evolution equation. This permits consideration of
a system deviation from the ideal as a significantly nonlinear phenomenon. The
conditions of spatial structure stability are determined mainly by parameters that
describe the system imperfection.  © 2004 Wiley Periodicals, Inc. Int ] Quantum Chem 100:
426-434, 2004
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1. Introduction

T he chemical reaction description by using
nonlinear equations has been carried out for a
long time. Investigation of the chemical system
properties described by complicated nonlinear dif-
ferential equations containing a high-order spatial
derivative and different types of nonlinear terms [1]
are very interesting. The considering of such equa-
tions for the different applications is activated in
recent years [2, 3].

The extension of a simple chemical reaction
model proposed by Schlogl [4] is derived by taking
the system imperfection and inhomogeneity of dif-
fusion processes into account. The meaning of the
Fick equation modification [5-7] makes the break-
ing of the ideality of diffusion. It leads to the ap-
pearance of high-order spatial derivatives of a con-
centration in an evolution equation.

The system imperfection also is taken into ac-
count by excess Gibbs function of regular solution
8, 9]
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where 7 is the total mole number, and #; is the mole
number of i-type molecules. The values of w;; are
determined by w;; = (2e; — &;; — ¢;)0, where ¢;; is an
energy of interaction between the molecules of i-
and j-types, 0 is a constant depending on a liquid
state model. The w;; characterizes the system imper-
fection. In the case of the binary solution it is more
convenient to use the positive parameter w = w;,/
RT, where T is temperature and R is the universal
gas constant.

Parameter w is the imperfection parameter. Tak-
ing w into account leads to modification of the
chemical potential and also to the diffusion coeffi-
cient dependence on a reagent concentration [10] in
the system considered.

The formation of the spatial inhomogeneous
structures being stable during the chemical reaction
under definite conditions is due to the breakdown
of an ideal system. Certain spatial inhomogeneous
structures can exist only in the imperfection system
and do not appear in the ideal system.

The parameters characterizing the system imper-
fection represent the coefficients at nonlinear terms
and a high-order spatial derivative in the evolution
equation. This fact permits consideration of system

deviation from ideality as a significantly nonlinear
phenomenon. The conditions of spatial structure
stability are determined by namely parameters de-
scribing the system imperfection. The derivation of
these conditions is held based on the linearization
of the evolution equation. The same phenomena
were considered while analyzing the scattering of
excitations in non-linear media with a spatial dis-
persion [11, 12].

2. Evolution Equation

Using the Schlogl model [4], we consider the
chemical system consisting of substances A, B, and
X mixed. It is supposed that the system is isother-
mal and isobar. The substance A transmutes in the
substance B by means of the substance X. The
scheme of this reaction can be illustrated as follows:
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where kq, k,, k3, k4 are constants of reaction rates. All
the reaction constants are positive.

Let us consider the concentration of the sub-
stance X depends on time f and spatial coordinates:
X = X(t, r), where r is the radius-vector. The speed
of concentration X changing has the form

ax<ax> +<ax> 0
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where (9X/dt), is the concentration changing due
to diffusion processes and (8X/ dt)..,, is the concen-
tration changing due to chemical kinetics only. The
last term of Eq. (1) is studied well and has the form

[9]:

9X 2 3
? - klAX - kzX - ng + k4B, (2)
chem

where A, B, and X are the concentrations of the
corresponding substances. The concentrations A
and B are constant and positive. As shown in this
report [10], taking the inhomogeneity of the diffu-
sion processes into account leads to the linear de-
pendence of the diffusion coefficient on the concen-
tration X in the form



D(X) = D-(1 - 2wX), 3)

where D is a diffusion coefficient in an ideal system
representing the constant (at constant temperature),
and w is determined earlier as the imperfection
parameter. The modified Fick equation takes the
form [5]

j = —DX) V(X — KVX), 4)

where j is diffusion flux density, D(X) is deter-
mined by Eq. (3), K is a positive constant character-
izing inhomogeneity of the diffusion flux, and V is
nabla. The calculation of

<8X> div i
- = —dwjp
ot diff

leads to the equation

aX
) = DV*X — DKV*X — 2Dw[(VX)?
dt diff

+ XV2X] + 2DKw[VX VX + XV'X]. (5)

Substituting Eqs. (2) and (5) into Eq. (1) and
neglecting by terms with DKw in Eq. (5) we derive
the evolution equation in the form

9X
—7 = DVEX ~ DKV'X — 2Dw[(VX)* + XV*X]

+ k4B - ng + klAXZ - ksz. (6)

With w = 0 in Eq. (6), we obtain the equation
proposed by Cahn and Hilliard [6]; Equation (6) is
known as the Swift-Hohenberg modified equation
[13, 14]. We suppose that the system considered is
one-dimensional and finite. Then, in Eq. (6), instead
VX it is possible to write X; meaning the partial
derivative over coordinate x:

X
o7 = D(X% = KXE) — 2Dw[(X)? + XX,]

+ k4B - ng + klAXZ - ksz. (7)

3. Spatial Inhomogeneous Structure
Classification

Let us analyze the spatial inhomogeneous struc-
tures that appear in the reaction-diffusion system

under consideration, based on nonlinear Eq. (7).
The kinetic approach uses the linear stability prin-
ciple. We will consider asymptotic solutions of Eq.
(7) and their stability. For this class of solutions, it is
known how to investigate stability without finding
the general solution of Eq. (7). For this class of
solutions, the overall nonlinear problem can lead to
the corresponding local linear one. According to
Lyapunov’s theorem [9], it is possible to analyze the
stability of nonlinear problem solutions on the basis
of analyzing the stability of the solution for the
corresponding linear problem.

The stationary homogeneous states for Eq. (7)
have been well studied [9, 15, 16]. Let us linearize
Eq. (7) near the stationary homogeneous state X,
with Z = X — X©. As a result, we obtain

0z
ETE wZ + D - Lp[Z], (8)
where o, = BkZX(s)2 — 2k, AX® + ks is the damping
velocity of homogeneous state X, Ly, is the linear
differential operator taking the form
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Lp= (1 *wa(s))W*KW.

The solution of Eq. (8) can be written as Z(x, t) =
Y(x)exp(—wt), where J{(x) and A are the eigenfunc-
tion and eigenvalue of the operator Ly, respectively,
® = wy — DA.

Spatial inhomogeneous structure is determined
by the eigenfunctions of the operator Lp. To find all
such eigenfunctions it is necessary to solute the
Sturm-Liouville problem Lp[y(x)] = Ay(x) with
standard boundary conditions at the boundaries of
the system considered —I = x < I: y(l) = (1) =
P(l) =¥ (=1) =0

The fact that the system under consideration is
symmetrical relatively the point x = 0 allows us to
search the eigenfunction in the form

P(x) = (%) + ¢(x), )

where ¢ (x) is a symmetric state and y,(x) is an
antisymmetric state.

The characteristic equation of the differential
equation Lp[¢(x)] = Ay(x) has the form

Kg* — (1 —2wX®)g? + A = 0. (10)



The solutions of the characteristic equation (10)
determine the certain spatial inhomogeneous struc-
tures appeared in the system considered.

3.1. PERIODIC STRUCTURES

The first type of spatial inhomogeneous struc-
ture described is called the periodic structures.
These structures can exist under conditions X® >
1/2wand 0 < A < A, where A, = [1 — 2wX®]?/4K.
The characteristic equation (10) has four imaginary
solutions, g; = *ixy, (j = 1, 2, 3, 4), under these
conditions. The solution of the Sturm-Liouville
problem has the form (9) where the symmetric and
antisymmetric states can be written as

COS Kyl >

———— COS Kp.X
COS Koyl =)

P(x) = Cs<cos KX —

sin K,/

P x) = Cu<sin KX — — lsin Khx), (11)

sin

where C,, are constants, ky,; = V K2 — 55/5 /2,
Kons = E5/1, kK2 = 2wX® — 1)/K > 0. The values &
are the real solutions of the equation

Etan & = € — Etan (€ — &, (12)

where £. = k. The values £, are the real solutions
of the equation

Lcot &, =€ — Ecot J& - £ (13)

The real solutions of Eqgs. (12) and (13) exist
under conditions —¢, < £ , < &.. The eigenvalues of
the problem considered are found by Eq. (10) mean-
ing the solutions of Egs. (12) and (13):

2 2
Ay = &<K§&> (14)

Note that the periodic structures appear in the
ideal systems (at w = 0 and K = 0), but they have a
simpler configuration [9].

3.2. QUASI-PERIODIC STRUCTURES

The second type of spatial inhomogeneous struc-
tures described is called as the quasi-periodic struc-
tures. Such the structures can exist under condition
A < 0, while the characteristic equation (10) has two
imaginary solutions, g,, = *iu and two real ones

43,4 = Tv. The solution of the Sturm-Liouville prob-
lem has the form (9), where the symmetric and
antisymmetric states can be written as

_c Cos ! h
P (x) = C,| cos pex — cosh o] cosh v.x |,

. sin pl
P (x) = C,l sin px — sinh ] sinh v,x |, (15)

where p, , = Vi + nsz,u/ I?, Vs, = M4/l The values
1, are the real solutions of the equation

nitanh n, = — /€ + pltan & + 7. (16)

The values 7, are the real solutions of the equation

ncothm, = & + plcot JE+ml.  (17)

The eigenvalues of the problem considered are
found from Eq. (10), meaning the solutions of Eqs.
(16) and (17):

2 2
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Note that for X© < 1/2w, the values x> and &
become negative. Hence in this case the condition
of existence of the real solutions of Eqs. (16) and
(17) appears in the form

_|§c| < Msa < |§c|

3.3. NONPERIODIC STRUCTURES

The third type of spatial inhomogeneous struc-
tures described is called as the nonperiodic struc-
tures. Such the structures can exist under condi-
tions X® < 1/2w and 0 < A < A, while the
characteristic equation (10) has four real solutions.
The solution of the Sturm-Liouville problem has
the form (9), where the symmetric and antisymmet-
ric states can be written as

cosh gyl
cosh gyl

Px) = Cs<cosh G1sX — cosh q25x>,

B b sinh g,/ h 19
P(x) = C,| sin t]mx*mﬂ JouX |, (19)

where C,, are the constants, g, ,

= gs,u/l/ qls,u =
ViZ = 2,75 ¢ = (1 — 20X®)/K > 0.



The values /, are the real solutions of the equa-
tion

{tanh {, = | — Ztanh [~ (20)

where {, = gJ. Values {, are the real solutions of the
equation

Leoth {,= & — Zcoth (& - 2. (21)

Real solutions for Eqgs. (20) and (21) exist under
conditions —¢. < {,, < {.. The eigenvalues of the
problem considered are found from Eq. (10) mean-
ing the solutions of Egs. (20) and (21):

2 2
Ao = K37 (q% - l—) (22)

Note that in the ideal systems (at w = 0 and K =
0), the quasi-periodic (15) and nonperiodic (19)
structures cannot exist. This means that such a new
spatial structure formation is due primarily to the
system imperfection. Therefore, this result must be
considered a significant nonlinear phenomenon.

4. Stability Conditions of
Inhomogeneous Structures

The inhomogeneous spatial structures consid-
ered can be stable at determined values of initial
component concentration A, imperfection parame-
ter w and diffusion inhomogeneity K. The state Z(x,
) = Y(x)exp(— wt) is stable under the condition w =
w, — DA > 0 where eigenvalues A must be taken in
the different spatial structures.

Analysis of the stability problem shows that im-
plementation of wy, — DA, , > 0, where A,, > 0 is
determined by Eq. (14), is needed for the periodic
structures (11). Meaning w, > 0 it leads to the
condition

(Dw? = 3k,K)(XY — X)(X® — X,) =0, (23)
where

Xi2(A)

Dw/2 - kK{A ¥ (A A)(A — Ay}
- Dw? — 3k,K !

A Dw + \(Dw?® — 3k,K)(D — 4k:K)
L2 2k,K :
(24)

Condition (23) can be fulfilled in the two follow-
ing cases, X; < X, and A; < A,.

1. If the system parameters are bound by w >
V3k,K/D and D > 4k;K, it must be realized

X® > X,.

2. If the system parameters are bound by w <
V3k,K/D and D < 4k;K, it must be realized
X, < X® < X,

The conditions formulated should be mentioned
as restrictions on the initial component concentra-
tion A. In both cases, it is necessary to obtain X , of
Eq. (24), for which X, ,(A) > 1/2w and A > A,.

The analysis of stability of the nonperiodic struc-
tures [see Eq. (19)] leads to w, — DA, , > 0, where
As, > 0 is determined by Eq. (22). Meaning w, > 0
it leads to the additional restriction on the solutions
of the equations (20) and (21) —¢; < ¢, , < {;, where
& = (&/2(1 — V1 - (4w l*/DKL)}. Solutions
{;, are real while obtaining Eq. (24), for which
Xy,(A) <1/2wand A > A,.

The analysis of stability of the quasi-periodic
structures [see Eq. (15)] leads to w, — DA, , > 0. In
this case, A, , < 0is determined by Eq. (18). For w, >
0 the quasi-periodic structures are always stable if
X® > 1/2w and if X© < 1/2w structures (15) are
stable while taking into account the condition —|&|
< m,, < |£] derived in section 3.2.

A more interesting situation for the stability
analysis of quasi-periodic structures is realized at
w, < 0. Under this condition it is necessary to
consider two following cases.

1. If X© > 1/2w the stability condition takes the
form m,, < —n, and n_, > m,, where 1] =
(&/2)(V1 + (@|w,|I"/DKE) — 1}.

2. If X® < 1/2w for stability of quasi-periodic
structures, it is enough to realize the condition
—|&] < m,, < |&] derived in section 3.2.

5. Nonlinear Concentration Waves in
Imperfect System

Let us suppose now that the flux density of
component X also depends linearly on their con-



centration. Hence, in the one-dimensional case, the
flux density of the model considered has the form

2

9 9
j= VXXD(X)~£<XKWX>, (25)

where vy is the constant. The calculation of (9X/
dt)gyr = —div j leads to equation

aX

FYn v X} + D(XJ, — KX§)) — 2Du[(X))* + XX!,]
+ B — kX +AX— X3, (26)

where Ak,, = A’, Bk, = B’, but apostrophes will be

coincides with Eq. (7).

Here is found the exact solution of Eq. (26). It is
termed by an elliptical function

X(x, t) = a dn*(k(x — vyt), q) + b, (27)

where the solution parameters are entirely deter-
mined by the coefficients of Eq. (26), and describes
the process of forming periodical structures. Solu-
tion (27) is a concentration nonlinear steady wave.
Its parameters are

2(5Dw + gk
St L

4

missed in the following. Equation (26) for vx = 0 5 / (28)
, _ 4DKQ2 — g)[15Kk, ~ 4w(5Dw + g)] + (5Dw + g) - 3Dk, 2
- ,GDw + g) / (29)

"~ 16D(1 — 4% + ¢){45K°k% — 8w[g(3Kk, — 4Dw?) + Dw(27Kk, — 20Dw)]}’

where a notation is ¢ = V5D(5Dw — 6Kk,); an el-
liptical function modulus g is determined by the
following equation

8DKak'g* + 2Dak*q*{1 — 2w(a + b) + 4Kk*}
+kya + b)® — A(a + b)* + ks(a + b) — B =0,
(31)

in that it is necessary to substitute Eqgs. (28)-(30). As
a result, Eq. (31) is an irrational equation with re-
spect to g. It is found by numerical analysis of Eq.
(31) that it has real solutions in the interval of
possible values of the elliptical function modulus
0 = g = 1 under the condition that the concentration
values of an initial component are limited in the
interval A, = A = A,..,. These boundary concen-
tration values A,,;, and A, depend on other pa-
rameters of Eq. (26), but studying influence of the
diffusion inhomogeneity parameter K is of greatest
interest. The results of the numerical solution of Eq.
(31) are shown on Figure 1, where the reverse de-
pendencies A(g) are illustrated for clarity. The in-
terval of the concentration possible values of the
initial component A converges sharply with in-
creasing K at fixed other values of Eq. (26) param-
eters. Upon that K < 5Dw?/6k, is also the limiting
of diffusion inhomogeneity parameter values for
which the concentration wave (27) exists.

The interesting feature of the solution (27) is that
it can exist at K = 0, but not at w = 0. So the
deviation from resolution ideality is more impor-
tant than the one from diffusion ideality for prop-

A
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FIGURE 1. Concentration of the initial product A
taken for the fixing values of the system parameters

ko = 0,21; ks = 1,25;w = 0,6;B = 0,5;D = 2)
and for different values of the K: (1): 0; (2): 1, 5; (3): 2;
4):2,3;5):2,5;16):2,7;,(7): 2, 8; (8): 2, 83.



FIGURE 2. Concentration of the product X taken for
the fixing values of the system parameters (the values
of the system parameters are the same as for Fig. 1,
but K = 2) and for different values of the concentra-
tion of the initial product A: (1): 0, 9241; (2): 0, 9254;
(3): 0, 9478; (4): A ax = 0, 9539. The straight line corre-
sponds to X® for A = A,

agating the nonlinear concentration waves (27). The
typical plots of solution (27) are represented in
Figure 2 at a specific system size —] = x = [ (in a
moving frame with the bound d = | — v«t). A wave
profile does not change over time in the frame
moving with the wave velocity equal to vy.

Then the steady homogeneous solution X =
X® = g(Apim) + B(Apm) follows from Eq. (27) at
A = An, and g = 0, as it results from Eq. (31).
Beginning from this value, concentration distor-
tions appear as waves for which an amplitude and
a period increase with increasing A.

At A = A, from Eq. (31), following g = 1 and
from Eq. (27), the solution as solitary wave of the
stationary profile is obtained (the plot 4 of Fig. 2):

X(x, t) = (32)

A
N (x —wmyp | O

where the parameters a,, = a(A,,.,), b,, = D(A
k,, = k(Ana) are determined by Eqgs. (28-30), or at
A=A~ and g =1, and from Eq. (31) follows that
the solution (32) exists only at a certain value of
B(A,,..) = b, (kb2 — A_..b, + k3). The concentra-
tion maximum X, , = 4, + b,, is placed in the

max)/

n

system center. The concentration rapidly falls up to
the value X, = b,,, moving away from this center.

It follows that at D = 0 and vy = 0 (full neglect-
ing diffusion fluxes is possible when good mixing
occurs during the reaction), Eq. (26) also has the
exact analytical solution that one can find to be
derived, for instance, in [9]. However, this solution
isn’t periodical. It means that the basic mechanism
of forming periodical structures such as the concen-
tration waves for chemical reactions of a monomo-
lecular type is diffusion processes, being no ideal.

6. Instabilities in Two-Component
Imperfection System With Mono- and
Bimolecular Mechanism of Reaction

It has been proved [9, 17] that in an ideal two-
component reaction-diffusion system with mono-
and bimolecular reaction mechanism the instabili-
ties (accurately, the limiting cycles) cannot appear.
We will show that taking the imperfection of diffu-
sion processes in the same systems into account
leads to the possibility of the existence of the dissi-
pative structures corresponding to the limiting cy-
cles.

Based on [9], let us consider the chemical system
consisting of substances A, B, X;, X, mixed. Sub-
stance A transmutes in the substance B by means of
substances X, X,. Such a two-component system is
described by the two differential equations in the
general form

aXl

W = DlLD[Xl] + Pl(Xll XZ)/

0X, (33)
W — DzLD[Xz] + PZ(Xll XZ)/

where X;, X, are the concentrations of two compo-
nents, respectively. The general form of the func-
tions F, ,(Xy, X;) is written in the form [9]
Fi(Xy, Xp) = ap * a, Xy + a,X,
- agx% + EI4X1X2 + EI5X%,
Fo(Xy, Xo) = bo = 01 X5 + 02Xy
= 0,X5 + 0,X X, + bsX5, (34)
where a; and b]. (j=1,...,5)are positive. In Section

2 it was shown that in the one-dimension system,
the linear differential operator



9? 9t
-

Lo=32

ax4/

where K is a positive constant characterizing inho-
mogeneity of the diffusion flux, must describe the
imperfection of diffusion processes. We neglect the
excess Gibbs function of the regular solution (see
section 1). It is supposed that the system is isother-
mal and isobar and the concentrations A and B are
constant.

We suppose that the stationary homogeneous
states X{” and X5 have been found from the system
of equations F;(X{, X§) = 0, FyX{, X§) = 0. Let
us linearize the system (33) near the stationary ho-
mogeneous states X\, X and put Z = (Z,, Z,)
where Z; = X; — X](s) (j = 1,2). We obtain the system
in matrix form

Z

where the matrix

f— Ly + DiLp Ly
Ly Ly + D,Lp

IR
’ z’]’*a_xj

X=X

The solution of the system (35) has the form Z =
hys, (x)exp(wt), where s, ,(x) is the eigenfunction of
the operator Ly, h is the constant eigenvector of the
matrix

A ~ (Lyy + DiA,, Ly, >
L0 = < Ly Ly + DyAs,)” (36)

A, , are the eigenvalues of the operator L, and o
are the eigenvalues of the matrix (36). The Sturm—
Liouville problem for operator Lp has been
solved in Section 3 for the case w # 0. Setting w =
0, we obtain that in this case the quasi-periodic
structures (15) and nonperiodic structures (19)
exist only.

The quasi-periodic structures (15) are deter-
mined by the negative eigenvalues

2

2
A%—??@+K7ﬂ, (37)

where 7, are the real solutions of Eqs. (16) and
(17), respectively.

The nonperiodic structures (19) are determined
by the positive eigenvalues

L Lo
A= <1Kz_2' (38)

where £, , are the real solutions of Egs. (20) and (21),
respectively, and —¢. < {,, <, . =1/ VK. Note
that the eigenvalues (37) and (38) depends on K and
[ only. It is different from the eigenvalues (18) and
(22).

It is known that diagonal elements of the matrix
(36) must have different signs (L1,L,, < 0) for the
dissipative structures appearing in the system con-
sidered. Also it is known that L;; <0 and L,, < 0in
the two-component system with mono- and bimo-
lecular reaction mechanism [9, 17].

In the system with ideal diffusion (K = 0), the
operator Ly becomes the ordinary Laplace operator
having the negative eigenvalues A = —k?, where k
has discrete values determined by [ and the form of
boundary conditions only. It is leads to Ly, = —|Ly;]
— Dyk* <0and Ly, = —|L,,| — D,k* < 0. As a result
we see Li,L,, > 0. It means that the limiting cycles
cannot appear in the system considered with ideal
diffusion [9, 17].

It is very interesting to note that in the system
with imperfection diffusion processes (K # 0), the
opposite situation could be realized. In this case,
the nonperiodic structures (19) having positive eig-
envalues (38) exist. This leads to L;; = —|Lyy| +
DA™ and Ly, = —|Ly,| + DoAY, The situation of
interest to us, L;;L,, < 0, can be realized in the two
following cases:

1. [,; > 0and L,, < 0, which can be from (|L,|/
Dy) < A% < (ILyl/Dy);

2. [,; <0and L,, > 0 which can be from (|Ly,|/
D,) < ALY < (ILyy|/Dy).

It is proved that the structure instabilities corre-
sponding to the limiting cycles can appear in a
two-component system with imperfection of diffu-
sion processes and with the mono- and bimolecular
reaction mechanism.

7. Conclusions

It is necessary to note that in the framework of
the simple chemical reaction model we describe



the new types of spatial inhomogeneous struc-
tures. Based on the nonlinear evolution equa-
tion, we prove that spatial inhomogeneous struc-
ture formation is due to the system imperfection
only.

It should also be noted that we succeeded in
obtaining the exact periodical solution of an an-
alytical form describing nonlinear concentra-
tion waves of the nonlinear equation maintaining
the high-order derivatives within a simple model
of a chemical reaction. It is obvious that the con-
sidered nonlinear equation (26) can have other
types of solutions as well. Although concrete re-
alizations are not found for the chemical reac-
tion model considered, it is seen to be impor-
tant from a theoretical point of view, namely,
the basic mechanisms of forming concentra-
tions waves are revealed on the basis of it, and a
role of the nonideal diffusion processes is dem-
onstrated.

Based on the simple chemical model, we have
proved the possibility of existence of the structure
instabilities corresponding to the limiting cycles in
a two-component system with imperfect diffusion
processes and with a mono- and bimolecular reac-
tion mechanism.
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