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Based on the dynamic diffraction theory [1], coherent x-ray radiation o f  a relativistic electron crossing 
a single-crystal plate at a constant velocity is considered in the Bragg geometry. In the general case o f  
asymmetric reflection o f  the radiation from  the target, expressions are derived fo r  the spectral-angular 
distribution o f  parametric x-ray radiation (PXR) and diffraction transition radiation (DTR). For a fixed  angle 
between the electron trajectory and the system o f  parallel atomic planes o f  the crystal (Bragg’s angle) it is 
shown that a decrease in the angle o f  electron incidence on the crystal plate gives rise to a significant increase 
in the PXR and DTR spectra, and the causes fo r  spectral broadening fo r  each o f  these radiation mechanisms 
are different.
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INTRODUCTION

When a fast charged particle crosses a single crystal, its coulomb field is scattered on the system of parallel 
atomic planes of the crystal, generating PXR [2-4]. Dynamic effects in PXR were reported in [5-8] in a geometry of 
symmetric reflection, where PXR is generally formed due to the main branch of the solution to the dispersion equation 
for x-rays in a crystal. In the Bragg scattering geometry in the case of symmetric reflection, the surface of the crystal 
target is parallel to the diffracting crystal surfaces (5 = 0). The influence of reflection asymmetry (5 4- 0) on the spectral- 
angular characteristics of PXR and DTR in the Bragg geometry for a semi-finite crystal was investigated in [9, 10], for 
the case of a plane-parallel plate -  in [11] (transition radiation of a relativistic electron) and in [12] (diffraction 
transition radiation). More recently in [13] it was shown that in the Bragg geometry reflection asymmetry exerts 
a considerable influence both on characteristics of parametric x-ray radiation along the velocity of a relativistic electron 
and on the contributions to the forward PXR yield from the two branches of the dispersion equation solution.

In this work we present the results of further theoretical investigation of coherent x-ray radiation of 
a relativistic electron crossing a single-crystal plate of finite thickness in the Bragg scattering geometry, which were 
obtained for the general case of asymmetric reflection (arbitrary orientation angle 8 of atomic planes of the crystal with 
respect to its surface). Based on the analytical expressions derived for the spectral-angular distribution of PXR and 
DTR, we address the contribution from each of the two branches of the dispersion equation solution in the crystal into 
the yield of parametric x-ray radiation for different observation angles 0 and investigate the influence of the reflection 
asymmetry on the spectral width of PXR and DTR and interference of PXR and DTR of a relativistic electron.

SPECTRAL-ANGULAR DISTRIBUTION OF RADIATION

Let a fast charged particle cross a single-crystal plate at a constant velocity V  (Fig. 1). Consider an equation 
for a Fourier image of the electromagnetic field
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Fig. 1. Geometry of the radiation process.

E (k , co) = Jii t  d 3r E (r J )e x p ( i(o t- ik r ) .  (1)

Since the field of a relativistic particle can be to a high accuracy taken to be transverse, the incident E () (k, co) 

and diffracted E g (k ,a )  electromagnetic waves would be described by two amplitudes with different values of 

transverse polarization

E n(k, co) = E f t \ k ,  coVn"1 + £'(<j2) (k, co)e((,2),
(2)

E g (k, co) = E (g \ k ,  co)ej(1) + E (g2) (k, c o ) ^ ,

where unit vectors e: ' 1and e((2) are perpendicular to vector k  , and unit vectors e[]> and e[2> are perpendicular to 

vector k  = k  + g . Note that vectors e ^ } . e ,2;i lie in the plane of vectors k  and k  ( n  -polarization), and vectors e ,'}

and e[]> are perpendicular to it ( o  - polarization), and g  is the reciprocal lattice vector determining the system of 

reflecting atomic planes of the crystal. The system of equations for the Fourier image of the electromagnetic field in 
a two-wave approximation of the dynamic diffraction theory has the following form [14]:

(co2 (1 + Xn) -  k 2 ) E ^  + oyx_gC <s’̂ E ĝ  = 8n2/eCQ6FP<s)S(CQ-kV),
(3)

co2x gC(s’T)E(s) + (CD2 (1 + Xo) ~ k 2 ) E f  = 0,

where %o = + i%* is the average dielectric susceptibility and x g - X~g are the coefficients of Fourier expansion of

the dielectric susceptibility of the crystal over the reciprocal lattice vectors g

(4)



Let us consider a crystal with a central symmetry (% = ) .  In Eqs. (4), %' and %" are given by the

following:

Xg = Z o ( ^ t e ) /2 ) ( 5 ,(^ ) /A fo ) e x p ^ - i g 2MT2j ,  %’g = Z o e x p ( ^ g 2w2 j  , (5)

where F(g) is the form factor of an atom containing Z electrons, S(g) is the structural factor o f a unit cell containing 
N () atoms, and u% is the root-mean-square amplitude of thermal vibrations of the crystal atoms. We consider an x-ray 
radiation region, for which < 0, %'0 < 0 .

Quantities C (s,T) and P (s) are determined in the system of equations (3) as follows:

C (S’T) = e ^ e j s) = (-1 )XC W , C (1) = 1 , C (2) = |cos29B|,

P (s-1 = e^-1 (n /  (x), P m  = sin (p, P^2> = cos (p, (6)

where ft = k  - m V  / V 2 is the component of the virtual photon momentum, which is perpendicular to the particle 
velocity V  ( u = 0)0 / ( ' .  where 0 « 1  is the angle between k  and V ), 0B is the angle between the electron velocity 
and the system of crystallographic planes (Bragg angle), (p is the azimuthal radiation angle measured from the plane 

formed by vectors V  and g  ; the value of the reciprocal lattice vector is derived by the expression g = 2coB sin 0B / V  , 
where coB is the Bragg frequency. The system of equations (3) for 5 = 1 and 1 = 2 describes the o  -polarized fields.

K
For 5 = 2 , the system (3) describes the n  -polarized fields, where if  20B < —, then 1 = 2 . otherwise 1 = 1.

Using standard methods of the dynamic theory [1], let us solve the following dispersion equation from the 
system of equations (3) for x-ray waves in the crystal:

(m2 (1 + Xo) ■- k 2 Xffl2 a  ■+ Zo) ■- k 2g) -  ooAl - gl gCis)2 = 0 . (7)

Find projections of the wave vectors k  and k g given by

cocos Vo + 03X0 + ^ — , = cocosy  + mXo + %g . (8)
2 co s \|/0 cos\|/0 2 co s \|/g cos\|/g

In so doing, we are going to make use of a well-known formula relating the additional dynamic terms X0 and

K  [i]:

Xs=? +X“^ '  <9)

where P = a - % 0 1- —  , a  = -Kr{k2 - k 2) , y0 = cos\|/0 , y = cos\|/ , \|/0 is the angle between the incident wave 
V  y0 J CD

vector k  and the normal vector to the plate surface n , and \|/„ is the angle between the wave vector k g and the 

normal vector. Scalars of vectors k  and k g are equal

k  = coVl + Xo K  =®V1+ Zo + ^ g - (10)



Given that k ~ oism \|/„ and k ~ cosin\|/ , we obtain

4y ,
- p ± j p 2 + 4v v c « 2 ^ .

To
(11a)

t, (i>2) = ®
S  4 P ± J P 2 + 4% ,% _,cw 2 ^ ( lib )

Since | Au| «  0) and |a.,,| « g o .  it can be shown that 0 - 0 '  (see Fig. 1), therefore hereinafter 0 ' will be 

denoted as 0 .
The solution to the first equation in the system (3) for an incident field in vacuum is given by

vac = ^ 2ieVJ p(S)-------L —  8 (a,* _  ̂ ) : 8n2ieVQP(s) 1

Xo
CO

<° Yo_

M to y . T.

s(K~K ( 12)

« * cop ^ g 'i * r\ *
where A = — + — A0 , A0 = co

* 2 Y0
T +9  Xo

/o
The solution to the system of equations (3) for the incident and diffracted fields in a crystal will, therefore, have 

the following form:

E
{, )cr 8n2ieVQPl's'> 2coXn

- H K - \

* g

+ ^ V . £ W(1)S ( ^  - ^ ) )  + _ ^ f _ i ? ( ^ ) 5 a  - 4 2)),

(13)

co 2x gC(sX> co 2x gC(sX>

e ^  =  b { x - x
frt a,2 V s s

(14)
‘g

+E(s)(l)S (ks - ^ )) + £ (i)(2)8(A,_ - ^ 2)),

where and Iih' ,n> are the free fields corresponding to the two solutions ( l ib )  of the dispersion equation (7).
The diffracted field in vacuum is given by

4 ' ’“ = £ & is ( » , + f f L) .  <l5 >

where E ^ d is the sought-for radiation field.

The expression relating the diffracted and incident fields in the crystal follows from the second equation of the 
system (3)



j-'((s)cr _  2 ( d X g g ( s ) c r
2„, £(s,T) (16)

Making use of ordinary boundary conditions on the input and output surfaces of the crystal plate

\E%*aad k g =\E% *xd k g , (17a)

\ ^ d X g = \ ^ d X g , (17b)

xsi - S - L

j£< i)cre Y* dX = 0 ,  (17c)

we obtain an expression for the radiation field

w  %%2ieVQP{s)77W _  
Rad ~~

00

rn f  .4 - 4 2) - ^
2to X™ è  Y* - X ^ e '  Y*

\

2a>e

To

. I k

'  To2

is

i -& — e— L

l - e  lg (18)

1 2coe ys

To - x „ - ^ ^ x ; + P A  
01Ï ,  Ye *S

(  C - x f  }
i—  - — L

l - e  lg

Since the radiation field contains contributions from PXR and DTR, let us represent the amplitude E ^ d as 

a sum of the PXR and DTR amplitudes

7 7 I »  _  77 I »  , 77(s) 
Rad ~~ PXR +  DTR : (19)

where

w  _  8n2ieV eP (s)/7W _
PXR _

oo2X*C(i-T)

CD

2co À(2)e Y* -X<?e

V J



kg -kg1)

2œe Y g œ

y2 /k* k(2̂  2 ^ - k 0- k g - kg2) ) > g

f  kg -kg2) 'ï — L
1 -  e lg

kg -kg2)

2œe Y g œ
f  kg -kg1) ^

i- i— —L
1 -  e lg (20)

Ë (s) =-^DTR _
8n2 ieV  9P( s) œ2 x  g C ( s  T)

œ

2œ

»(')  ̂
-i——L -i— L

kg2)e y« - № e  y«

1 œ

Yo

_ lYg
-Xo - ^ ^ k g  + 0 ^

œ y;  g y;
2 A  ko

f  kg2)- i ^ —L -i
e y« -  e (21)

Expression (20) describes the PXR field. The branch of PXR, for which the real part of the denominator can 

vanish to zero Re (Xg -Xg1,2)) = 0 ,  is significant. It was assumed earlier that only one branch makes a significant

contribution to the PXR yield [8]. The cited work, however, addresses a particular case of symmetric reflection, where

'' W  = gthe atomic planes are parallel to the crystal plate surface
Yo

. In this work, we consider a general asymmetric

case, so in what follows we are going to point out the conditions under which the other PXR branch predominates. 
For further analysis, it is reasonable to represent kg and k (g1,2) as

k („u )  =
œXg C (s)| f  , ip( s)

£(s) - ip( s)(1 + £)

1
^(s)2 -  e -  ip(s) ((1 + e)^(s) -  2k (s)e) -  p,( s) (s) -  2k (s)e) -  p(s)2 f  £ + ) °  - k ( s)2 e

(22a)

mix' C (s)I 
kg -  lXg2 I ( (s) - ip(s) - e o (s) ) (22b)

where

^ ( s ) (œ) -  a _______ Xo (1 + e) _ ^ ( s ) (œ) + (1 + e) v (s) =  1 X gC  1 p(s)  -  x o

2 | x ;  C ( s ) | 2 1 x ';  C (s )Xg 2v ( s)
x o  i , p  i x ; c (s)

3o6
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Fig. 2. Two possible orientations of the plate surface for a fixed angle 0B .

The first one corresponds to e < 1, the second one corresponds to e > 1.

w (cfl) «  2 sin2 9B ( (PB(l + 9cos(pcot 9B) ^  e J j e ±
2 | % ; c w | F 2 | % ; c w | l  oo y  To ][o' ’

o W = ^ 7 p r ( e 2 + T“2 -% o)- (23)

Since in the region of resonant frequencies the inequality 2 sin2 9B / V 2 |%'g | C (s) » 1  is fulfilled, so r |w  (oo) is

a fast function of frequency oo, and for further analysis of the PXR and DTR properties it is convenient to treat r |w (oo) 

as a spectral variable characterizing the frequency oo. Note that the resulting formulas contain

ql ,v;i (oo) = r| vl (co) + instead o fr |w (co), where the second term in the former expression is due to the refraction
2v (s>

effect.
When deriving Eqs. (22), we took into consideration that in the radiation geometry under study the angle 

between the diffracted photon momentum and the normal vector to the crystal surface is obtuse, implying that
yg = c o s y rg < 0 .

Parameter e from Eq. (23) can be given by e = sin(9B - 8 ) /s in (9 B + 8) ,  where 8 is the angle between the 
input surface of the target and the crystallographic plane. For a fixed angle 9B the value of e determines orientation of

the input crystal plate surface with respect of the system of diffracting atomic planes (Fig. 2). With decreasing the angle 
(9B + 8) of electron incidence on the target, parameter 8 becomes negative and further its scalar value is increased (in 
the limiting case 8 -> - 9 B ), which results in increasing e . On the contrary, when the angle of incidence is increased, e 
decreases (the limiting case is 8 -> 9B ).

EFFECT OF RELECTION ASYMMETRY ON PXR AND DTR SPECTRA

Let us consider a thin crystal and disregard absorption, assuming that pl ,v;i = 0 . Substituting Eqs. (20) and (21) 

into a well-known expression [14] for the spectral-angular x-ray radiation density



d  2 N
œ— —  -  œ2 (2n)-6 £  |£ R d |2

d œd O
(24)

we obtain an expression for the spectral-angular PXR and DTR distribution

œ
2 ( s)

d  n pxr P ( s)2 9°
.2 ,02 , J'PX^ T n PXRd  œd  O n 2 (92 + y 2 -X o)

R(1)( s) + o(2)W + R INT(s)
^■DVD T  /Vd y d  i -  A

R(1)(s) -  ^PXR _
O+s) 1 -£

-ib(s ) (a+s)-c (s )'

A(s) A+s) - o (s)
R ( 2)(s) -

(s) -ib(s) ( ) -CT(s) '
O-s) 1 -  e 1

(̂s) a -s) -  o (s)
(25a)

R ^  s) -  -2 R e
O+s ) 1 -  e

-ib(s) (A+s) -o(s)ï ^

A(s) A+s) - o (s)

(
O-s ) 1 -  e

-ib(s ) ( - s ) -o(s ) )
*\

A(s) A-s) - o (s)
(25b)

œ
2 (s) 2 f

d  n d t r  -  e _  p(s)2 92
n 2 92 +Y-2 -X o 92 + y -2

R (s)

R (s) -DTR _
ib(s)Aw ib( s)A+s)e - -  e +

A - )eib(s)A-s) -  A(s)eib(s)A+s)

where the following notations have been introduced:

A(s) = A-s)e~lb(s)A+s) -A+s)e~lb(s)A-s) , Q±s) = o (s) [ e- ' ^ ^  - 1)  + A±s ) ;

(25c)

AM ^ ) ± , / ÿ ^  b(,) œ |xgC(s)| L

2Yo

Note that parameter b( s) is equal to the ratio of a half of the electron path length in the plate L / 2y0 to the

x-ray extinction length in the crystal 1/ œ|xgC(s) .

(1)(s) (2)(J'Function ^PXR describes the spectrum corresponding to the first branch of PXR, ^PXR describes the second
■)( s)

T( s)branch, and R INT is the result of interference of the two x-ray waves corresponding to them. The above expressions, 
Eqs. (25), obtained following the dynamic diffraction theory for the spectral-angular density of the two branches of 
PXR and DTR represent the main result of this study.

A contribution from the first (or second) branch would be significant, when the respective equations are solved

A+s) -  o (s) -  5(s) + \ ^ (s)2 £  -  c (s) -  o , 
e

(26a)

A(s) - o (s) -
Ç(s) - ^ (s)2 - e  -  ,s) -

- o ( s) - o . (26b)

s -1

e

e

3o8



As follows from Eq. (26), the maximum of the PXR spectrum always lies outside the region of total reflection 
(extinction)

( o w V e - l ) 2

— — > ' (26C)

The region of total reflection is determined by the following inequality:

1 +  E  r  1 +  E
—v/e — <r\(-s ) < y /e ------— . (26d)

2v w  2v(s)

Extinction occurs in the case where a double-reflected wave coincides with the primary wave in its direction, 
but is phase-delayed by n  with respect to it. Due to this fact, the incident wave amplitude in the course of wave 
propagation into the bulk of the crystal would decrease, implying that its energy would be transferring into the reflected 
wave [1].

It is evident that the width of this region is controlled by 2-Te .
It can be demonstrated that Eq. (26a) can be solved given that

e >- M 2 or e > ■
(  q2

(27a)

JXol T2 |Xo
- +  1

Eq. (26b) is solvable only if

e <■ t« 2 or e < -
(  q2

(27b)

JXol Y2 | Xo
- + 1

I x  |
Parameter v l ,v;i = —  --------  in the case of strong reflection of x-ray waves from atomic planes is close to unity,

IX o  I

while in the case of weak reflections it is close to zero. Since v,l ,v;i < 1, then in the case where e > v,l ,v;i2, only the

inequality (27a) is satisfied, implying that in this case only Eq. (26a) is solvable, and it is the first branch i4xR tlial 
contributes to the PXR yield. Should we increase the reflection asymmetry so that parameter e would grow, then the 
spectral width would increase as well (Fig. 3). Indeed, the larger the param eters, the weaker the denominator

AW _  jn the expression for the ^ p x r spectrum would vary w ithq ' 1 (co).

It should be noted that the electron path length in the crystal plate L / y0 remains unchanged for a constant

value of p a ram ete r//'1. If we consider a case where e < v,l ,v;i2. then, depending on the observation angle 0 and the 
electron energy J , either of the inequalities, Eq. (27a) or Eq. (27b), is satisfied, hence, for a fixed electron energy and 

the same observation angles 0 , the first PXR branch can predominate (Fig. 4), while for other values it would be the 
second branch (Fig. 5). A narrower PXR spectrum would correspond to smaller values of param eters.

Let us consider now the effect of reflection asymmetry on the DTR spectrum. The curves of spectral 
dependence R ^tr constructed following Eq. (25c) are depicted in Fig. 6 and exhibit a strong effect of reflection 

asymmetry on the spectrum of DTR. It is evident that an increase in parameter e gives rise to an increase in the spectral 
width, which is associated with the respective increase in the region of total reflection (extinction) (see Eq. (26d). Note



Fig. 3. Effect of reflection asymmetry on the PXR spectral width. Fig. 4. Spectra of two PXR branches.

Fig. 5. Spectra of two PXR branches. Fig. 6 . Effect of asymmetry on the DTR spectrum.

that the spectral amplitude is also significantly increased, which is due to proportionality of the incident field amplitude
11  I

to the value of e = —— (see. Eq.(12)) in the case of diffraction.
To

ANGULAR DENSITY OF PXR AND DTR

In order to analyze the effect of asymmetry on the angular density of radiation, let us integrate Eq. (25) with 
respect to the function r |w  ( co) and write an equation for the angular density of PXR and DTR and their interference 

term, which determines the total radiation density

(s)
^ P X R ,D T R ,IN T

dD.

e2v (s)p(s)- ^ ls] ^
. T . T „ -̂ PXR.DTR.INT ' (28a)
271“ sin-



F <S)1 D-VT? Xo

f  e 2
J x o l  T2 bco

7 (R m (s)
J I PXR

(2 )' + R L
r(‘s')

dr(« (28b)

■ + 1

/TW 
DTR ~~

Xo

f  e 2
- + i

bc'ol T2 bcol J  Ibc'ol T2 bco

(28c)

■o iy

(J)F -  -1ÎNT _ z
Xo

(  q2
- + 1

\ 2 (  q2 A

( (

: J Re
Q ?  1-«

bc'ol y 21%01 J  I  bc'ol y 2 |Xo

J)(AW-CW1 V
Q (_s )  1 -

A (s) Aix)- o w  Aw  A (_s)- c (s)

o|  J

,WaW

A ^ V
.MaM

-A ^ V '
,wAw

(28d)

Figures 7-9  depict the curves describing contributions from PXR, DTR and their interference term into the total 
angular density = F j ^  + F $ R + /'jy j , which were constructed according to Eqs.(28) for specific values of crystal

parameters and electron energy. It is evident from Figs. 7 and 8 that with decreasing the angle of electron incidence on 
the plate (increasing parameter e ) there is a considerable increase in the angular PXR and DTR density and the total 
angular density of radiation. Expression (28) allows us to study the dependence of the angular density of radiation on 
the incident electron energy. For comparison, Fig. 9 depicts the curves of the angular density distribution for the same 
parameters as in Fig. 8 but for larger electron energies. It is clear that in this case the diffraction transition radiation 
contributes more significantly into the total angular density than does the parametric x-ray radiation.

SUMMARY

Based on the dynamic diffraction theory, analytical expressions have been derived in this work for the spectral- 
angular distribution of parametric x-ray radiation and diffraction transition radiation of a relativistic electron crossing 
a single-crystal plate in the Bragg scattering geometry in the general case of symmetric reflection. The contributions 
into PXR from the two branches of the solution to the dispersion equation for x-ray waves in a crystal have been 
examined. It has been shown here that for the case of electron incidence on the plate at a large angle to its surface the 
ratio of the contributions from the two branches will sharply vary with the observation angle 8.

With a decrease in the angle of electron incidence on the crystal plate and unvaried Bragg angle, the PXR 
spectral width is considerably increased, which gives rise to increased angular density (the effect is not due to 
absorption). Also, the influence of reflection asymmetry on the diffraction transition radiation spectrum has been 
studied. It has been demonstrated that with a decrease in the angle of surface orientation with respect to the system of 
crystallographic planes 8 , both the spectral width and amplitude of DTR are increased. The dependences of relative 
contributions from PXR, DTR and their interference term into the total angular density on reflection asymmetry have 
been investigated.

This study has been performed using an RFBR grant (Project No. 08-02-12015-ofi) and a BelSU grant BKT
001-08.



Fig. 7 Fig. 8

Fig. 7. Angular density of radiation in a symmetrical case.

Fig. 8. Angular density of radiation in an asymmetrical case.

Fig. 9. Angular density of radiation in an asymmetrical case for 
higher electron energy than in Fig. 8.
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