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Abstract—We study the acoustics equations in poroelastic media which were obtained by the author
previously in result of homogenization of the exact dimensionless equations describing the joint
motion of an elastic solid skeleton and a viscous fluid in the pores on the microscopic level. A small
parameter in this model is the ratio £ of the average size [ of the pores to the characteristic size L of
the physical region under consideration. The homogenized equations (the limit regimes of the exact
model as ¢ tends to zero) depend on the dimensionless parameters of the model, which depend on
the small parameter, and are small or large quantities as ¢ tends to zero. On assuming that the solid
skeleton is periodic, we analyze the concrete form of acoustics equations for the simplest periodic
structures.
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INTRODUCTION

Modern geophysics, studying the propagation of perturbations in the natural underground rock,
includes various physical and mathematical models describing these processes. For a long time the
main model was the system of Lamé’s equations of linear elasticity. However, starting with the article
by Biot [1], geophysics tends more and more to grapple with the fact that the presence of pores and
cracks filled with fluids (liquids or gases) plays an essential role in modelling natural rock, i.e., that
underground media is poroelastic. The phenomenological models of [1] are certain combinations of
Lamé’s equations and the equations describing fluid dynamics in pores (for instance, the Darcy system
of filtration equations).

[t is well known that the main drawback of complicated phenomenological models is the presence
of phenomenological constants (or functions) which must be somehow determined, and it is also
necessary to critically examine the structure of the differential equations itself. In order to understand
the gist of this type of models, R. Burridge and J. B. Keller proposed in [2] a completely natural
approach to their justification. Namely, they considered a complete mathematical model describing
on the microscopic level the behavior of the mixture of an elastic solid skeleton and a fluid filling
the pores. This model is plausible since it consists of Lamé’s equations, Stokes’ equations, and the
well-known conservation laws on the solid-fluid boundary, as well as includes minimal number of the
phenomenological constants (Lamé’s constants, viscosity, and the speed of sound in the fluid) which are
sufficiently reliably determined experimentally.

The complete model includes some small and large fast oscillating coefiicients that depend on a small
parameter £ which is the dimensionless pore size. The second assumption of the authors, also quite
natural, is that all phenomenological models correctly describing this process must somehow follow irom
the main model as the small parameter tends to zero. Thus, the correct phenomenological models are
some homogenization of the complete mathematical model describing the process on the microscopic
level. For a periodic system of pores, using a method of two-scale decomposition, the authors formally
derived the Biot poroelasticity equations.

Later some rigorous derivation of the homogenized equations appeared in [3—5]. As a rule, the
derivation of the homogenized equations is not accompanied by their mathematical analysis. This is
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while x(y) is the 1-periodic extension to R? of the characteristic function of Y; in Y; py is pressure in
the liquid; ps is pressure in the solid skeleton,
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Here p is the viscosity of the fluid, A is Lamé’s constant of the solid skeleton, I is the characteristic
size of the domain in which we study the physical process, 7 is the characteristic time of the process,
pr and p, are the dimensionless densities of the fluid and solid relative to the density of water po, ¢y is the
speed of sound in the fluid, ¢, is the speed of compression wave in the solid skeleton, and g is the free fall
acceleration.
We understand (1.1)in the sense of distributions. It means that the displacement vector w of the solid
component satisfies the Lamé equation
*w
psw = a\w — Vps

in the solid skeleton Qf (where x* = 0), while the vector velocity v = %—VZ of the fluid component satisfies
the Stokes equation

ov
pr = o Au— Vpy

in the pore space Q% (where x* = 1). Meanwhile, on the common boundary I'* = 905 N 0QF between
the solid skeleton and pore space the displacement vector w satisfies the continuity condition

[w](x0,t) =0, xpel', t>0,
and the momentum conservation law

[P n|(xo,t) =0, xpel', t>0,

where n(xg) is the unit normal vector to the boundary at x € I', and

[](x0, 1) = ©re) (X0, ) — ©(r)(X0, 1),

V(o) (X0, 1) = lim w(x,t), o) (x0,t) = lim w(x,t).

X—Xp, XEQNQs X—Xg, XEQp

More exactly, (1.1) means the validity of the integral identities

Pw
F P:D =
/(p 52 Y+ (m,@)) dedt =0
Qr
for all smooth vector functions ¢ = @(x, t) finite in the domain Q7 = Q x (0,7).
In this identity A : B stands for the convolution of two matrices with respect to both indices:

3
A:B= tr(IB* OA) = Z Az]B]z

6,=1
Henceforth, we assume that © = R3. Then the problem is only completed with the initial conditions

w(x,0) = wo, %—V:(X, 0) = vo, x € R?, (1.4)

for the displacement vector of the continuous medium.

Suppose that the dimensionless parameters «,, az, o, r, and «, ; depend on the small parameter &,
and there exist finite or infinite limits

il\{% a#(‘g) = Mo, il\{‘% OQ\(‘C:) = Ao, il\{‘% ap7f(€) - C;y
; * T .G
Ell\rgap,s(e) = C55 EI% = =M ;g —= — AL



In addition, assume that
to = 0, 0 < ¢}, cg < oo. (1.5)
All possible limit regimes for (1.1)—(1.4) are described in [4, 5]. These regimes depend on a physical

criterion Ag characterizing the elastic property of the solid skeleton. We can roughly divide all ground
materials occurring in practice into the three groups:

(1) Ao = oo for an absolutely rigid solid skeleton;
(2) 0 < A\ < oo for a weakly deformable solid skeleton;
(3) Ao = Ofor an extremely deformable solid skeleton.

Refer to the corresponding porous media as absolutely rigid solid, elastic, and extremely elastic
porous ground.

In this article, we calculate the coefiicients of the homogenized systems of equations for two simplest
geometries of the pore space.

Thus, suppose that the elementary cell Y is described by one of the two geometries:

Geometry (A). The set Y7 is the layer
Vi={yeR : 0<yr<m, 0<y,ys <1}

where m < 1 is the porosity of the pore space.

Geometry (B). The set Y consists of the three disjoint cylinders of the same radius with the axes
parallel to the corresponding axes of the rectangular coordinate system:

v, =vPuyPuy?,
Y]fl):{y€R3:O<y1<1,yg+y§<r2},
v = {yeR:0<y <1yt (s —a) <r?),
ViV =y eR:0<ys <1, (g1 —a)? + (2 — a)® <72},

where 3172 = mwith2r <a <1 —r.

The resulting systems of equations are quite complicated, and in the general case rigorous mathe-
matical results for them are lacking. For instance, in all physical situations under consideration and the
main geometric structures of the pore space, the equation

op /
i /b(t —7)Ap(x,T)dr (1.6)
0

is a typical one, where a positive infinitely differentiable function b(t) of t > 0 is determined only by the
geometry of the pore space. This is an integrodifferential equation, and no rigorous mathematical results
are presently available. More complicated physical processes are described by systems including (1.6),
for instance, the system

2 1— ) < 2 <
pf@ers(l—m)a—g:( m)io( Ao + c)@_z_(m)\oJrc)@y (1.7)
ot ot (Ao + ¢s) Ox m(Xo + ¢s) Ox

i+ (L=m) \ap  Ov  (1=mes &*u 0
g m{ho+es)) Ot Ox (No+es) dwdt




2. ACOUSTICS IN AN ABSOLUTELY RIGID POROUS GROUND: X\ = o0
An absolutely rigid body is characterized by Ag = oo; in this case, the displacement of the solid
skeleton tends to zero, while the limiting velocity v and pressure p; in the liquid satisfy the acoustics
equations [1]
i

mv(x,t) = —/]Bl(t —7)- Vps(x,7)dr, (2.1)
0

opr | 4y

E + CfleV =0 (22)
il 0 < 1 < o0, and the system of acoustics equations consisting of the continuity equation (2.2) and
ov
mps 5 = —(ml—B2) - Vpy (2.3)
In (2.1),
Bir) = ( / VO (y,1) dy) De =3 (VO(y,t)y, we, (2.4)
i=1 \y =1
f

where {eq, ey, e3} are the unit basis vectors of the Cartesian coordinate system; for given vectors a
and b, the skeleton a @ b is fined as

(a@b)-c=a(b-c)

for an arbitrary vector ¢, while the functions V®, ¢ = 1,2, 3, are 1-periodic in y solutions to the initial
boundary value problem

Py a}/:) —mAVY L VRY —0,  yeYy, t>0, (=)
div,V¥ =0,  yeY, t>0, .
VO(y,t) =0, yenr, t>0, 20
mps VO (y,0) =e;,  yeYr 28

The matrix By in (2.3) is determined similarly:
3

By = Y (VRi(y))y, @ e, (2.9)

=1
where the functions R; are the 1-periodic in y solutions to the boundary value problem
AyR; =0, y €Yy, (2.10)

1
Vszwn:Enei, y €. (2.11)

[t is easy to see that the system (2.2), (2.3) reduces to one hyperbolic second order equation with
constant coefficients. Thus, we pay the main attention to (2.1), (2.2).

In geometry (A), the initial boundary value problem (2.5)—(2.8) for i = 2,3 reduces to the initial
boundary value problem

ov 02V
= >0 2.12
Zarn may% 0, 0<yr<m, t>0, (2.12)
V(0,1) = V(m,t) =0, t>0, (2.13)

mpV(y1,0) =1, 0 <y <m, (2.14)



for the one-dimensional heat equation if we put
VO = V(y,t)e;,  RY =o.

For i = 1, the situation is different. Namely, in this case, the unique solution to (2.5)—(2.8) is given by
the functions

v =0, RW=0.
Seemingly, the existence of the unique zero solution contradicts the inhomogeneous initial condition

(2.8). In reality, the peculiarity of the problem is such that {V{)  R!} satisfies (2.5) and the initial
condition (2.8) in the sense of the integral identities

1
/ [ (=ovO%E 1wV e ) dyde— - [en oty 0dy (2.15)
0 Y Yy

for all smooth solenoidal functions ¢; i.e., at the initial moment, the solution to (2.15) coincides with
the projection of the initial function onto the subspace of solenoidal functions. Since e; = V¢ for this
geometry, where the scalar function ¢ that is 1-periodic in y coincides with y; on Y; therefore,

/el : SO(Y7 O) dy — 07
Yy

and the unique solution to (2.15) is V(Y =
Summarizing the argument, we have

0 0 0
Bia(t) = (o bia(t) 0 ) 7 (2.16)
\0 0 bl,A(t)/
where
batt) = [V tdy = (Viz, ),
Y
and (2.1), (2.2) reduces to f

t
Opy N .
E = Cf /le (Bl,A(t — T) . va(X7 T)) dT?
or
(9pf (92pf 82171”
2 Cf/blAt_T)<a +(’92 (x,7)dr. (2.17)

In geometry (B), the domain Y} is the union of disjoint domains Y]@, j =1,2,3. Thus, the initial

boundary value problem (2.5)—(2.8) for {V®, R®} in Y; splits into the three independent initial
boundary value problems

AV . . ()

P~ WmAVED) 4 VRED —o yevY, t>0, (2.18)
div,Vi) =0,  yev?, t>q, (2.19)
VE(y 1) =0, yes?, t>0, (2.20)

p VO (y,0)=e;, yev?, (2.21)



for the functions {V(&7), R in Y]@,j = 1,2, 3, where

3
v© — z:V(iJ')7 RW — Z R
j=1 j=1
In a similar fashion, the initial boundary value problem (2.5)—(2.8) for the functions {V(7) RG-1)}
in the domain Y]E” reduces to the heat equation

2 2
pfaa—[t] — (27%] + %) =0 (2.22)
in the domain Z = {(z1,22) : 27 + 25 < r?} for t > 0 with the homogeneous boundary condition
U(z1,22,t) =0 (2.23)
on 0% = {(z1,22) : 21 + 23 = r?} for t > 0 and the inhomogeneous initial condition
mpsU(21,22,0) =1, 222 < r? (2.24)
if we put
VU (y, 1) = U(z1,22,t)e;,  RUI) =,
where

y = Al 7+ a’
is a linear change of variables taking the cylinder {z € R® : (21, 22) € Z, 0 < 23 < 1} into the cylinder
Y]@ . Meanwhile, as in the case of geometry (A), the unique solution to the initial boundary value problem
(2.18)—(2.21) fori # 7 is V&) = 0, R®7) = 0.

Therefore,
bip(t) O 0
Bip()=| 0o b)) 0 | (2.25)
0 0 b
where

by s(t) — /U(zl, oo t) dzy dzs — (U(z1, 20, 1))7,
7

and (2.1), (2.2) reduces to

t

0

—gtf =c} /bLB(t —T)Aps(x,7) dr.
0

3. ACOUSTICS IN A WEAKLY DEFORMABLE POROUS GROUND: 0 < Ay < o0
As above, consider only the case

0 < pyp < oc.

[f 0 < Ao < oo then the displacement of the solid skeleton u is already nonzero, while the pressure py
and the velocity v of the fluid component satisiy the acoustics equations
i

vm@—?—/Bl(t—T)~fo(X,T)dT, (3.1)
0

1 apf 1 aps . . Ou

Bl i A — -1 - 2

= ot +c§ 5t +divv = (m — 1)div 5 (3.2)



related to the averaged LLamé system for the displacement u of the solid skeleton:

d9%u . s s
m) T div (A :D(x,u) + (Copf),

1
o Ds +E§ : D(x,u) + bydivu + cgpy = 0.
8

Pf—=7 ot ‘|‘ps( -

In turn, the last equation is a corollary of the macroscopic equations

P =Dy + ps,
2

s o0t a1 m) T = v (1~ m)D(a,w) 1 (D, U)y,) — o),

1
o Ps + (1 = m)divu + (div,U)y, =0

s

and the microscopic equations
1
aive, (Aal = 0@, 0) + DGew) = (Pt o)) o

1
c_*PS + (1 —x)(diva+div,U) =0

s

(see[1]). Forinstance, we obtain (3.3) from (3.5) and (3.6) by expressing in the last equations

(D(y, U))y, = / Dy, U)dy,  (div,Uy,
Y.
as
Mo(D(y, Uy, = Af : D(a,u) 1 Cipy,

(div, Uy, = E§ : D(z,u) + (b — 1 + m)divu + cops

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

in result of solving (3.7) and (3.8). These equations are sufiiciently easy to solve only for geometry (A).
Namely, by the uniqueness theorem and the structure of Y, the solution U to (3.7), (3.8) depends only

on ¥ (and the variables (x,t) as parameters). Put

ou; Ou;

1 .
dij(X,t) = 2 <—(9£E'(X7t) + G (x, t)) , 4,7 =1,2,3, u = (ug, Uz, us).
J i

Then we express (3.7), irom which the pressure P is excluded using (3.8), as three scalar equations

0 oy . 1
— (1 — A Y — 4+ \od *d — =0
e <( x(y1)) << o+cs) n + Aodi1 + cidivu + mpf>> )

a% (Aou — () (%‘ZL + d)) =0,

aal ()\o( - x(y1)) (;gU?’ +d31>> —0,

whose solution we can write explicitly. The averaged values of the tensor D(y, U) satisfy

8U1> (1—m) ( ¥ 1 1 ) <(9U1> .
—_— = ———— | Aodi1 + cidivu + — , =0, i=2,3,
< o /y, (Ao +¢t) 0% mpf i [y,

<?9—[y]2> = —(1 —m)d, <(ZZQ> —0, =23,
1 Y, 3 Y,
oU-
<_3> — (1 —m)dus, <8U3> —0, =23
oy Y, Dy Y,

1
2
1
2



In addition, from the last relations and (3.6) we find the concrete form of (3.4):

1 Ao(1—m) <8u1 > (1 —m)
—pg———— | — —diva ) - ———p; = 0. 3.9
czp (Ao +¢t) \ 91 m(Xo + cﬁ)pf (3.9)

Furthermore, for the matrices (D(y, U))y, and D(z, u), we have

Do = (1 —m)D(x,u) + (D(y, U))y,

U,
(1 —=m)di + < o0 >Y$ 0 0
- 0 (1 — m)d22 (1 — m)d23
0 (1 — m)d32 (1 — m)d33
cA(l—m) [ . ouy (1 —m)
s T ) o 0
(Ao +ct) (dlvu (’9:101) m(Xo + cﬁ)pf 0
- 0 (1 — m)d22 (1 — m)d23
0 (1 — m)d32 (1 — m)d33
Therefore,
mpf
A% :D(z,u) +Copy = 0 (1 —m)day —p (1 —m)dos . (3.10)

0 (1 — m)d32 (1 — m)d33 —p

For geometry (A), the equation of motion of the liquid phase (3.1), (3.2) is very simple:

ou ou
fulzma—tl, m—2—/61 (t—71) (’9—f( T)dr,
A1
m—aug—/blAt—T —(9 f( T)dr, (3.11)
1 apf 1 Ops . ou
_ 1 — — = 0.
oot o Pavy T mmidivgs =0

By (3.9) and (3.10), we can express the vector equation (3.3) as the scalar equations
A82U1 . 1 (’9pf

P o~ Tm by
(’9 D%uy Puy 1 0 [Ous  Ous Ip
s H el =m)z = (1= ”0(@9@3 2 o (a—mﬁa—xz)) P
Ovs F?us 1 0 [0Ouy Ous F?us dp
. — -9 (v, Ous - 3.12
prgp L= m)Z = (L=m) (2 s (axg VT owe) T o ) T o (3.12)
1 X(l—m) .., (1 —m)
o —pst W,
P=prtp P + (Mo +¢s) divu m(Xo + ¢s) br
where
p=mpr+ (1 —m)ps, div'u:%Jr%.

(9%2 (9%3



The system (3.11), (3.12) is closed and strongly anisotropic in different directions. Thus, as we
consider the Cauchy problem in which the initial perturbations depend only on 21, this system reduces
to the wave equation

Ppr  Ppy
— 3.13
o T oa? (3.13)
for the pressure p; in the fluid component and the equation
0y a dpy
- ) 3.14
dtoxry mp ot’ (3.14)
where
a=mp iJri(l_m)
G T et e )
However, if the initial perturbations depend only on x2 and 23 then (3.12) and (3.13) reduce to
9 i
v = ma—lt1 — /bLA(t —7)(Vpsx, 1) dr,
0
ov (9211 )\0
— 4 ps(l—m)=— = (1 —m)22(A — Vp,
Prgy tesl=m)mm = (1 —m)-(Aut V() - Vp (3.15)
1 apf 1 aps . . Ou
— 2= 1— — =0
ot oo AV HImmydivgs =0,
1 Ao(l—m) . (1 —m)
— S — Vs -~ N - N, N — Oy
P=prtp PR (Ao +cs) divu m(o + cs) !
where
V:(07U27U3)7 u:(O,’UQ,’U/g),

while all differential operators depend only on 22 and 5.

In the simplest case, when the initial perturbations depend only on x with 2 = 25 or 2 = 23, the
system (3.20)—(3.22) for the functions p, w, and v with p = py, (u,v) = (u2,v2) or (u,v) = (us,vs),

reduces to
t
. Ou op
v=mot - /bLA(t ™) 2, ) dr,

0
ov 9%u 1 —m)Ao(Xo + 2¢5) P*u (mXo + ¢5) Op 3.16
Pf—+Ps(1—m)—2:( Jo(Xo )—Q—w—y ( )

ot ot (Ao + ¢s) Ox m(Ao + ¢cs) Ox

(1 (1 —m) )@ v (1—m)es F*u

cr motes)) ot or ' (No+es) Owot

4. ACOUSTICS IN AN EXTREMELY DEFORMABLE POROUS GROUND: Ay =0

Here we consider only one physical case described by a new acoustics equation and, in our opinion,
characteristic for acoustics in poroelastic media:

0 < p, A1 < 00.



According to [5], for these criteria, the limit regime is described by the system
1 1

Sp=— 41
=P (4.1)
1 1 .
—pr+ = ps Hdivw =0, (4.2)
cy ck
5 t
a—‘: = /Bg(t —7)-Vps(x,7)dr (4.3)
0

for the displacement w of the continuous medium and the pressures p; and py in the fluid and solid
components. The matrix B3(¢) is determined by the solutions to the periodic initial boundary value
problems

_PWW oW ; .
P~ 4w {“1><D <y7 5 | A=) D(y, W) — ROT S |

(4.4)
y €Y, t >0,
div,W? =0, yeY, >0, (4.5)
. oW 1
(4 - A S , Y. 4,
Wy, 00 =0,  p——(,0) —m % Y (4.6)
using
OW®
Bs(t) = Z < B (yyt)> @ ey,
=1 Y
where

p=prx + ps(L—x).

As in Section 3, we consider only geometry (A) for which the last equations that determine Bs(t)
take the simplest form. Namely, for geometry (A), the solutions to (4.4)—(4.6) for i = 2,3 depend only

on the spatial variable ;. Indeed, putting W — W (y,,t)e;, we obtain the periodic initial boundary
value problem for W (yy, t):

_PW 9 82W+)\(1_ \ow
P~ by \MXapar T Y T Xy,
oW 1

W{y1,0) =0, ﬁﬁ(yho) S Taomy

>, 0 <y <1, t >0,

0 <y <1,

which has the unique solution in the corresponding function space. Our statement now follows from the
uniqueness for the original problem (4.4)—(4.6). For i = 1, the situation is different. We know (see [5])
that (4.4)—(4.6) possesses a unique solution in this case as well, but the natural assumption that this
solution depends only on the spatial variable y, leads to a contradiction. Therefore, here we see again the
previous situation with the inhomogeneous Stokes problem (2.15) in the class of solenoidal functions.
Recall that (4.4) is understood in the sense of distributions as the integral identity

T

oW gy ALY
_ s o¥ _ (1)
//( P& B +<u1xD<y, 5 >+A1(1 X)D(y, W ))D(y,s0)> dy dt
Y

0

—/7(1_17”) er - ¢(y,0)dy



for a solenoidal function W valid for every smooth solenoidal function ¢ equal to zero fort = 7.
Since for this geometry e; = V¢(y), it follows that the right-hand side of this identity vanishes for
all solenoidal functions ¢, and the unique solution to this identity is W = 0. Consequently,
0 0 0
Bsa(t) =1 0 bsa(t) 0 ;
0 0 b3, 4 (1)

where
oW
bz a(t) /W(yht) dyi .
v
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