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Abstract A variety of possible schemes of X–ray sources based on Cherenkov
like emission mechanisms is considered theoretically. The possibility to
increase substantially an angular density of parametric X–ray source
under conditions of grazing incidence of emitting relativistic electrons
on the reflecting crystallographic plane of a crystalline target is shown.
The growth of Cherenkov X–ray angular density due to modification
of the structure of Cherenkov cone in conditions of grazing incidence
of an electron beam in the surface of a target is discussed as well as
the peculiarities of Cherenkov X–ray generation from relativistic elec-
trons crossing a multilayer nanostructure. The question of relative con-
tributions of parametric X–ray and diffracted bremsstrahlung to total
emission yield from relativistic electrons moving in a perfect crystal is
elucidated. X–ray generation during multipasses of an electron beam
through an internal target in circular accelerator is considered as well.

Keywords: Relativistic electron, Cherenkov X–ray radiation, Parametric X–ray ra-
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1. Introduction
Creation of an effective and inexpective X–ray source alternative to

synchrotrons is a major focus of interest for the studies of coherent emis-
sion from relativistic electrons in dense media. A number of novel sources
based on transition radiation [1], channelling radiation [2], parametric
X–ray radiation [3], Cherenkov radiation [4] have been studied and con-
sidered as candidates for possible applications. However, the intensity

235

© 2006 Springer. Printed in the Netherlands.

H. Wiedemann (ed.), Advanced Radiation Sources and Applications, 235–265. 



236

of these sources must be increased for them to be practical [5]. Because
of this, the study of new possibilities to increase the spectral-angular
density of such sources is a subject of much current interest.

The main attention in this paper is devoted to the analysis of Cherenkov
like emission mechanisms. Substantial disadvantage of these mechanisms
consists in the strongly non-uniform angular distribution of emitted pho-
tons close to a hollow cone. As a consequence one should collimate the
emitted flux to obtain a uniform photon distribution on the surface of
irradiated test specimen. A possibility to use the effect of emission
cone modification in order to increase the part of collimated photon
flux employed is studied in this paper. Parametric X–rays (PXR) from
relativistic electrons moving in a crystal or multilayer nanostructure is
considered in Sec.2. Substantial growth of PXR local angular density
in conditions of small orientation angles of the emitting particle velocity
relative to reflecting crystallographic plane is shown. Sec.3 is devoted to
study of Cherenkov X–ray radiation in the vicinity of photoabsorption
edge of the target’s material [1, 6–20].The case of grazing incidence of
emitting electrons on the surface of the target is the object of investiga-
tions.

Cherenkov X–ray radiation from relativistic electrons crossing a mul-
tilayer nanostructure is considered in Sec.4 of this paper. This scheme
is of interest because of possible arrangement of the irradiated test spec-
imen in the immediate vicinity of the multilayer due to large emission
angles achievable on condition under consideration.

Relative contributions of PXR and diffracted bremsstrahlung to total
emission yield from relativistic electrons crossing a perfect crystal are
studied in Sec.5. This problem is of the great interest because the re-
sults of some recent experiments [11, 12] are in contradiction with the
generally accepted opinion that PXR yield is determined in the main by
the Bragg scattering of the fast particle Coulomb field (actually PXR
emission mechanism). Performed studied show that the contribution of
diffracted bremsstrahlung to total PXR yield may be very substantial in
contrast with above opinion.

2. PXR in conditions of small orientation angles
of emitting particle velocity relative to
reflecting plane

Let us consider properties of PXR from relativistic electrons moving
through a crystal aligned by reflecting crystallographic plane at the small

The
well known kinematical formula for the spectral-angular distribution of
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angle ϕ/2 to the velocity of the emitting electron (see Fig.1).
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emitted PXR energy [3, 13]

dE

dt dω dΩ
=

8πZ2e6n2
a|S(g)|2e−g2u2

T

m2(1 + g2R2)2
(εωv − g)2 − [εω(n,v) − (n,g)]2

[g2 + 2ω
√

ε(n,g)]2

×δ
[
ω
(
1 −

√
ε(n,v)

)
− (g,v)

]
(1)

is used for our purposes. Here Z is the atomic number of the crystalline
target, na is its atomic density, S(g) is the structure factor of an el-
ementary cell, g is the reciprocal lattice vector, uT is the mean square
amplitude of thermal vibrations of atoms, R is the screening radius in
the Fermi-Thomas atom model, the simplest model with exponential
screening is used, ε = 1 − ω2

0/ω2, ω0 is the plasma frequency, n is the
unit vector to the direction of emitted photon propagation, v is the
velocity of emitting electron.

Figure 1. The geometry of PXR process. e1 is the axis of the emitting electron
beam, e2 is the axis of the emitted photon flux, θ′ is the orientation angle describing
possible turning of the crystalline target by the goniometer, g is the reciprocal lattice
vector, Θ‖ and Ψ‖ are the components of the angular variables Θ and Ψ parallel to
the plane determined by the vectors e1 and e2.

Introducing the angular variables Θ and Ψ in accordance with for-
mulae

v = e1

(
1 − 1

2γ−2 − 1
2Ψ2

)
+ Ψ, (e1,Ψ) = 0,

n = e2

(
1 − 1

2Θ2
)

+ Θ, (e2,Θ) = 0, (e1, e2) = cos ϕ, (2)
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one can reduce the formula (1) to more simple form in the case of small
orientational angle ϕ/2 � 1 under consideration

dE

dt dω d2Θ
≈ E0

g

ω

g
ω ( g

ω − ϕ + 2θ′ + 2Θ‖) − 1
γ2

( g
ω − ϕ + 2θ′ + 2Θ‖)2

(3)

× δ
[
1
γ2 +(Ψ⊥ −Θ⊥)2 + (ϕ +Ψ‖ −Θ‖)

2 − g
ω (ϕ +2θ′ +2Ψ‖)

]
,

E0 =
16πZ2e6n2

a|S(g)|2e−g2u2
T

m2(1 + g2R2)2g3
,

where two-dimensional angles Ψ and Θ describe the angular spread in
the beam of emitting electrons and the angular distribution of emitted
photons respectively, Ψ2 = Ψ2

‖+Ψ2
⊥, Θ2 = Θ2

‖+Θ2
⊥, the angle θ′ describ-

ing the possible turning of the crystay by the goniometer is outlined in

photon ω is assumed to be large as compared with the critical energy
γω0 determining the manifestation of the density effect in PXR [14].

Let us consider the orientational dependence of strongly collimated
PXR (Θ2 � γ−2) from electron beam crossing a thin enough crystal
(the multiple scattering angle Ψtot achievable at the exit of the target is
assumed to be small as compared with γ−1). The simple formula follows
from (3) in conditions under consideration

dE

dt d2Θ
= E0γ

2gF0(2γθ′, γϕ), (4)

F0 =
γ2ϕ2

1 + γ2ϕ2

(
2γθ′ − 1

γϕ

)2

(1 + 4γ2θ′2)2

Obviously, in the limit γϕ → ∞ the dependence F0(2γθ′) is reduced to
well known in PXR theory curve with two symmetrical maxima. On
the other hand, amplitudes of these maxima differ essentially from each
other in the range of small orientation angles, as may be seen from

PXR photons is concentrated in the narrow range of observation angles
close to the left-hand maximum in PXR angular distribution. It is of
first importance that the amplitude of this maximum increases with
decreasing of the orientation angle ϕ/2. Thus, the possibility to increase
substantially PXR angular density can be realized in the range of grazing
incidence of emitting electrons on the reflecting crystallographic plane
of the crystalline target.

In circumstances where ϕ � 1 special attention must be given to
PXR spectral density. Integrating (3) over observation angles allows
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Fig.1, γ is the Lorentz-factor of emitting electron, the energy of emitted

Fig.2. The discussed asymmetry implies that the most part of emitted



On X–ray sources 239

Figure 2. Asymmetry of PXR orientational dependence. The presented function
F0(2γθ′) is connected with PXR angular density by Eq.4. The curves 1,2,3 have been
calculated for γϕ = 2, 5, 20 respectively.

one to obtain in the case of strongly collimated radiation Θd � ϕ (Θd

is the photon collimator angular size) best suited for our purposes the
following expression for the spectrum of emitted energy

dE

dt dω
≈ E0γ

−1
(2γθ′ − 1

γϕ)2

(1 + 4γ2θ′2)2
γ3ϕ3 ωB

ω

×

√√√√Θ2
d

ϕ2
−
(

1 −
√

ωB

ω

(
1 +

2θ′

ϕ

)
− 1

γ2ϕ2

)2

(5)

× σ


 ω

ωB
− 1 + 2θ′/ϕ(

1 + Θd
ϕ

)2
+ 1

γ2ϕ2


σ


 1 + 2θ′/ϕ(

1 − Θd
ϕ

)2
+ 1

γ2ϕ2

− ω

ωB




where ωB = g/ϕ is the Bragg frequency in the vicinity of which PXR
spectrum is concentrated, σ(x) = 1 if x > 0 and σ(x) = 0 if x < 0.

As one would expect, amplitude of the spectrum (5) as a function of
the angle θ′ peaks at the value of θ′ corresponding to maximum in the
orientational dependence (4). In line with (5), the relative width of PXR
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spectral peak
∆ω

ω
≈ 4

γ2ϕ2

1 + γ2ϕ2

Θd

ϕ
(6)

increases with decreasing of ϕ in the range ϕ � γ−1, but this growth is
returned if ϕ becomes comparable with γ−1.

The width (6) is determined by the collimator size Θd. In the real
conditions this width may be changed due to multiple scattering of emit-
ting electrons. In order to estimate an influence of multiple scattering
on PXR properties one should average the general expression (3) over
scattering angles. It is interesting to note in this connection that the rep-
resentation of PXR spectral-angular distribution in the form (3) is very
convenient for further analysis because the scattering angle Ψ appears
in the argument of δ-function in (3) only.

Using the general formula

dE

dω d2Θ
=

L∫

0

dt

∫
d2Ψf(t,Ψ)

dE

dt dω d2Θ
(7)

and the distribution function

f(t,Ψ) =
1

π(Ψ2
0 + Ψ2

St)
exp

[
− Ψ2

Ψ2
0 + Ψ2

St

]
, (8)

where Ψ0 is the initial angular spread of emitting electron beam, ΨS =
1
γ

√
LSc is the multiple scattering angle per unit length, LSc ≈ e2LRad/4π,

LRad is the radiation length, one can obtain the following formula for
the emission spectral-angular distribution:

dE

dω d2Θ
= E0

γLSc

2
Φ
[

ω

ωB
, Θ, θ′, γϕ,

L

LSc

]
, (9)

with

Φ = γϕ
ωB

ω

ωB
ω

[
ωB
ω − 1 + 2

ϕ(θ′ + Θ‖)
]
− 1

γ2ϕ2[
ωB
ω − 1 + 2

ϕ(θ′ + Θ‖)
]2

×σ

[
ωB

ω

(
ωB

ω
− 1 +

2
ϕ

(θ′ + Θ‖)
)
− 1

γ2ϕ2

]

×
t+∫

t−

dt

κ(t)

[
E1

(
t2 + (κ − Θ⊥/ϕ)2

Ψ2
0/ϕ2 + γ2ϕ2L/LSc

)
(10)
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−E1

(
t2 + (κ − Θ⊥/ϕ)2

Ψ2
0/ϕ2

)

+E1

(
t2 + (κ + Θ⊥/ϕ)2

Ψ2
0/ϕ2 + γ2ϕ2L/LSc

)
− E1

(
t2 + (κ + Θ⊥/ϕ)2

Ψ2
0/ϕ2

)]
,

κ(t) =
√

(t+ − t)(t − t−),

t± =
ωB

ω
− 1 +

Θ‖
ϕ

±
√

ωB

ω

(
ωB

ω
− 1 +

2
ϕ

(θ′ + Θ‖)
)
− 1

γ2ϕ2

Let us use the result (9) to study the influence of multiple scattering on
the orientational dependence of strongly collimated emission. It should
be noted that the formula (9) does not take into account an influence
of photoabsorption of emitted photons, but small values of the angle ϕ
correspond to large values of the Bragg frequency ωB = g/ϕ, so that the
emission of weakly absorbed hard X–rays is considered actually in this
section.

PXR spectrum (the function Φ(ω/ωB)) calculated by (9) in the max-
imum of orientational dependence (Θ = 0, 2γθ′ = −

√
1 + 1/γ2ϕ2 +

1/γϕ) is illustrated by the curves presented in Fig.3 and Fig.4. The sim-
plest case of an electron beam without initial angular spread (Ψ0 = 0)
is considered in this paper. The curves presented in Fig.3 illustrate the
effect of substantial increase of PXR spectral width with decreasing the
parameter γϕ. The effect of saturation of PXR spectral density due to
an influence of multiple scattering with an increase in the thickness of
the target is demonstrated by the curves presented in Fig.4.

An advantage of PXR emission mechanism discussed above consists
in the possibility to generate X–rays in wide frequency range. On the
other hand the intensity of PXR is not very high. More intensive source
of X–rays can be created on the base of Cherenkov emission mechanism
[8, 9] to be studied in the next section.

3. Cherenkov X–rays in conditions of grazing
incidence of emitting electrons on the surface
of a target

Cherenkov emission mechanism allows to generate soft X–rays in the
vicinity of atomic absorption edges, where a medium refractive index
may exceed unity [4]. This theoretical prediction has been experimen-
tally confirmed [6–10]. Let us consider Cherenkov X–rays under spe-
cial conditions of grazing incidence of emitting electrons on the surface
of a target. We are interesting in the emission process in soft X–ray
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Figure 3. The growth of PXR spectral width with decreasing the incidence angle.
The presented function Φ is connected with PXR spectral density by Eq.9. The curves
have been calculated for fixed values of the parameters Θ = 0, Ψ0 = 0, 2γθ′ =
−
√

1 + 1/γ2ϕ2 + 1/γϕ, L/LSc = 0.3 and different values of the parameter γϕ.

range of the emitted photon energies ω, where an influence of a photoab-
sorption is very important. Assuming that the photoabsorption length
lab ∼ 1/ωχ′′(ω) (χ′′ is the imaginary part of the dielectric susceptibil-
ity) is less than the electron path in the target L/ϕ (L is the thickness
of the target, ϕ is the grazing incidence angle, ϕ � 1) we are led to
the simple model corresponding to the emission of a fast electron mov-
ing from semi-infinite absorbing target to a vacuum where the emitted
photons are recorded in X–ray detector (see Fig.5). Since background
in the small frequency range under study is determined in the main by
transition radiation, we neglect the contribution of bremsstrahlung. In
addition to this we consider the emission from electrons moving with
uniform velocity v, assuming that the value of multiple scattering angle
achievable on the distance of the order of lab, Ψms ∼

√
Lab/γ2LSc is

small relative to characteristic angle of the Cherenkov cone
√

χ′(ω)
(χ′(ω) is the real part of dielectric susceptibility).

GC. ary et. al.
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Figure 4. The saturation of PXR yield due to the influence of multiple scattering.
The curves have been calculated for fixed values of the parameters γϕ = 3, Θ =
0, Ψ0 = 0, 2γθ′ = −

√
1 + 1/γ2ϕ2 + 1/γϕ and different values of the parameter

L/LSc.

Figure 5. Geometry of the Cherenkov radiation process. n is the unit vector to the
direction of emitted photon propagation, v is the emitting electron velocity, ϕ is the
incidence angle.

Since the solution of the task under study is well known, we present
the final result only

dE

dω d2Θ
=

16e2

π2

χ′2 + χ”2

(Θx + τ ′)2 + τ”2 (11)

×
[
γ−2 + (Ψy − Θy)2 + Θ2

x − Ψ2
x

]2 + 4Ψ2
x(Ψy − Θy)2

Ω2
−Ω2

+
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× Ψ2
xΘ2

x

[γ−2 + (Ψy − Θy)2 + Θ2
x + Ψ2

x − 2Ψxτ ′]2 + 4Ψ2
xτ”2

τ ′ =
1√
2

√√
(Θ2

x + χ′)2 + χ”2 + Θ2
x + χ′,

τ ′′ =
1√
2

√√
(Θ2

x + χ′)2 + χ′′2 − Θ2
x − χ′,

where the angles Ψ and Θ describe as above the angular spread of
the beam of emitting electrons and the angular distribution of emitted
photons respectively (see Fig.5), Ω± = γ−2 + (Ψy −Θy)2 + (Ψx ±Θx)2.

The formula (11) allows to search the dependence of the total emission
distribution on the value of incidence angle Ψx. Within the range of
small Ψx under consideration multiple scattering of emitting electrons in
the target can influence substantially on emission properties. To account
such influence one should average the expression (11) over Ψx and Ψy.
We use in this work the simple distribution function

f(Ψx, Ψy) =
1

πΨ2
L

exp

[
−

Ψ2
y + (Ψx − ϕ)2

Ψ2
L

]
, (12)

where ΨL =
√

L/γ2LScϕ is the multiple scattering angle achievable at
the electron path in the target L/ϕ.

As will be apparent from (11) the presented spectral-angular distri-
bution contains a maximum (Cherenkov maximum), determined by the
condition γ−2 + (Ψy − Θy)2 + Θ2

x + Ψ2
x − 2Ψxτ ′ = 0, which can be rep-

resented as

γ−2 − χ′ + Θ2
y +

(
ϕ −

√
Θ2

x + χ′
)2

= 0 (13)

in the most interesting for us frequency range of anomalous dispersion
before absorption edge where χ′′ is usually much less than χ′ (as this
takes place τ ′ ≈

√
Θ2

x + χ′, τ ′′ ≈ 1
2χ′′

/√
Θ2

x + χ′ ) and the Cherenkov

radiation can be realized if χ′ − γ−2 > 0 in accordance with (13) (this
is well known Cherenkov threshold in X–ray range). An influence of
multiple scattering is neglected in (13) as well.

Let us consider the angular structure of the Cherenkov peak versus
the orientation angle ϕ. From (11) for large enough ϕ �

√
χ′ > γ−1 the
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emission angular distribution comprises two symmetric cones

dE0

dω d2Θ
=

e2

π2

χ′2
[
γ−2 − χ′ + Θ2

y + (ϕ − Θx)2
]2

+ χ′′2

×
Θ2

y + (ϕ − Θx)2[
γ−2 + Θ2

y + (ϕ − Θx)2
]2 (14)

The first of these radiation cones corresponding to the condition (13)
represents Cherenkov radiation. Second one describes well known tran-
sition radiation. The structure of these cones is changed essentially
when decreasing of the incidence angle ϕ. The distribution of emission
intensity over azimuth angle on the Cherenkov cone becomes strongly
non-uniform in contrast with (14). To show this let us compare the
magnitudes of the distribution (11) in the plane Θy = 0 at the points

Θ(±)
x max =

√(
ϕ ±

√
χ′ − γ−2

)2
− χ′, (15)

following from (13) and corresponding to the maximum of the Cherenkov
radiation intensity. Such magnitudes follow from (11) and (15)

dE
(±)
max

dω d2Θ

∣∣∣∣∣
Θy=0

=
4e2

π2

χ′ − γ−2

χ′′2
1
ϕ2

(16)

×


 1

ϕ ±
√

χ′ − γ−2
+

1√(
ϕ ±

√
χ′ − γ−2

)2
− χ′




−2

First of all it is necessary to note that two maxima (16) can be realized
in the range of large enough values of ϕ >

√
χ′ +

√
χ′ − γ−2 only, as it

follows from (15). Obviously, the value of these maxima one the same
for large enough ϕ �

√
χ′ and coincide with that following from (14)

dE
(±)
max

dω d2Θ

∣∣∣
Θy=0

= dE0 max

dω d2Θ
= e2

π2
χ′−γ−2

χ′′2 .

In accordance with (15) only the maximum dE
(+)
max

dω d2Θ
is realized in the

range
√

χ′ −
√

χ′ − γ−2 < ϕ <
√

χ′ +
√

χ′ − γ−2 (the Cherenkov cone
begins to contact with the target’s surface if ϕ =

√
χ′ +

√
χ′ − γ−2).

The magnitude of this maximum can exceed substantially the asymptotic
value e2(χ′−γ−2)

π2(χ′′2)
. The ratio

(
dE

(+)
max

dω d2Θ

/
dE0 max

dω d2Θ

)
, as the performed analysis
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of the expression (16) implies, depends strongly on the parameter γ2χ′.
For example, this ratio has a value of about 10 if γ2χ′ = 5.

The result obtained is of great importance for the creation of an effec-
tive Cherenkov based X–ray source. Indeed, Cherenkov emission mech-
anisms allow to generate very intensive soft X–ray beams (a yield of the
order of 10−3 photons/electron has been obtained experimentally from
a single foil [8, 9]). On the other hand, the angular density of Cherenkov
radiation is not high since Cherenkov photons are emitted in a hollow
cylindrical cone with a relatively large characteristic angle ΘCh ∼

√
χ′

to the electron trajectory. To obtain a uniform angular distribution of
the emitted photons one must extract a small part of Cherenkov cone
by the photon collimator. As a consequence, the useful part of the total
emission yield is reduced substantially. In the range of small incidence
angles ϕ � 1, the distribution of Cherenkov photons over azimuth angle
becomes strongly non-uniform. Therefore the possibility to increase the
used part of emission yield is opened by placing of photon collimator
at the point corresponding to the maximum of the angular density of
Cherenkov radiation. Such possibility is demonstrated by Fig.6, where
the angular distribution of Cherenkov radiation calculated by the for-
mula (11) for fixed photon energy is presented.

Figure 6. The dependence of Cherenkov cone structure on the incidence angle
ϕ. The presented spectral-angular distributions of Cherenkov radiation have been
calculated for Be target, ω = 111.6 eV 1/γ

√
χ′

max = 0.4, χ′
max = 0.05. Distrib-

ution 1 corresponds to the value of ϕ = 0.17
√

χ′
max. Distribution 2 corresponds to

ϕ = 3
√

χ′
max.
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As illustrated in Fig.6, there is not only the effect of non-uniform
distribution of emitted photons over azimuth angle, but the effect of
decreasing of Cherenkov emission angle when decreasing of the incidence
angle ϕ as well. The effect in question have the simple geometrical
interpretation [15]. As is clear from Fig.5 a photon emitted at the angle
Θ(+)

x max > ϕ has a shorter path Lph in the target than that of Lel emitting
electron. This effect is small for large orientational angles ϕ �

√
χ′. The

photon yield is formed in this case at the part of electron inside trajectory
of the order of absorption length lab ∼ 1/ωχ′′. On the other hand in the
range of small ϕ <

√
χ′ the ratio Lel/Lph ∼ Lel/Lab ∼ Θ(+)

x max/ϕ is
increased substantially in accordance with (16), which is to say that the
useful part of electron trajectory and consequently the photon yield are
increased. Geometrical interpretation allows us to explain both azimuth
non-uniformity of the angular distribution of emitted photons (photon
path in the target is increased with increasing azimuth angle) and the
effect of ”Cherenkov angle” decreasing.

It should be noted that the degree of non-uniformity in the emission
angular distribution over azimuth angle depends strongly on the value
of incidence angle ϕ. The great importance of correct choice of ϕ is
demonstrated by the curves presented in Fig.7. These curves describing
the ratio

(
dE

(+)
max

dω d2Θ

/
dE0 max

dω d2Θ

)
as a function of ϕ have been calculated by

the formula (16) for different values of the parameter γ2χ′.
Cherenkov X–ray radiation yield from Be target has been calculated

in this work by the use general formula (11) and dielectric susceptibil-
ities χ′(ω) and χ′′(ω) determined experimentally [16]. The curves pre-
sented Fig.8 describe the spectra of Cherenkov photons, emitted from
the above mentioned target into the collimator with finite angular size.
The collimator’s center was placed in performed calculations at the point
corresponding to maximum of the emission angular density. Its angular
size was chosen so that the emission yield in such a collimator was close
to saturation for small incidence angle ϕ when the emission angular dis-
tribution over azimuth angle was strongly non-uniform. The presented
curves demonstrate the substantial growth of the emission yield when
decreasing of the incidence angle ϕ.

It should be noted that the emission angular density increases very
substantially when increasing emitting particle energy, but this growth is
followed by decreasing of optimum value of incidence angle ϕ (see Fig.7).
Along that the influence of multiple scattering of emitting electrons in
the target increases as well. Obviously such influence must constrain the
discussed growth of the emission angular density. We have calculated the
spectral-angular distribution of Cherenkov radiation from Be target on
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Figure 7. The amplification factor for Cherenkov angular density as a function of
the incidence angle ϕ. The curves 1, 2 and 3 correspond to the value of the parameter
γ2χ′ = 2, 5 and 10 respectively.

the basis of the formula (11) averaged over beam spread at the exit of the
target using the distribution function (12). The result of calculations,
presented in Fig.9, shows a strong suppression of the angular density of
Cherenkov radiation due to multiple scattering (this is because of very
small angular width of Cherenkov cone proportional to χ′′ as follows
from (16)). On the other hand, the yield fixed by a photon collimator
with finite angular size is not changed substantially as it is evident from
the Fig.10.

Comparison of above considered X–ray sources based on PXR and
Cherenkov mission mechanisms shows that PXR has an advantage over
Cherenkov source consisting in the emission angle. This property allows
to arrange an irradiated sample in the immediate vicinity of the source.
The possibility to integrate properties of PXR and Cherenkov radiation
sources into a single pattern is studied in the next section of the paper
devoted to X–ray emission from relativistic electrons crossing a multi-
layer nanostructure under conditions when Cherenkov radiation can be
realized.

GC. ary et. al.
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Figure 8. The spectrum of Cherenkov radiation from Be target as a function of the
of the incidence angle ϕ. The curves have been calculated for Be target, 1/γ

√
χ′

max =
0.1, χ′

max = 0.05, the collimator angular sizes ∆Θx = 0.3
√

χ′
max, ∆Θy = 0.3

√
χ′

max.
Curves 1, 2 and 3 corresponds to ϕ = 5

√
χ′

max, 0.5
√

χ′
max and 0.05

√
χ′

max respectively.

4. Cherenkov X–rays from relativistic electrons
crossing a multilayer nanostructure

Consider X–ray emission from relativistic electrons moving in a medium
with a periodic dielectric susceptibility χ(ω, r) = χ0(ω)+

∑
g

′χg(ω) ei(g,r).

In the case of a one-dimensional structure consisting of alternative layers
with thicknesses a and b and susceptibilities χa(ω) and χb(ω), respec-
tively, the quantities χ0(ω) and χg(ω) are determined by the expressions

χ0(ω) =
a

T
χa +

b

T
χb,

χg(ω) =
1 − ei(g,a)

igT
(χa − χb), (17)
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Figure 9. An influence of the multiple scattering on the Cherenkov radiation
spectral-angular distribution. The curves 1 and 2 have been calculated with and
without account of the multiple scattering respectively. The curves calculated for
1/γ

√
χ′

max = 0.04, ϕ = 0.08
√

χ′
max.

where T = a + b is the period of multilayer structure, g = exg, g ≡
gn = 2π

T n, n = 0,±1, . . . , ex is the normal to the surface of a target
(see Fig.11).

This task was under study in connection with the problem of X–ray
source creation based on PXR and diffracted transition radiation from
relativistic electrons crossing a multilayer nanostructure. The general
solution obtained within the frame of dynamical diffraction theory can
be found in [17], where an emission process in the range of hard X–
rays far from photoabsorption edges has been considered. In contrast to
this, soft X–ray generation in the vicinity of a photoabsorption edge is
analyzed in this work. PXR properties can be changed substantially in
this case due to the occurrence of Cherenkov radiation [18].

Embarking on a study of emission properties one should note that
only Bragg scattering geometry can be realized in the case under con-
sideration. Since soft X–rays are strongly absorbed in a dense medium,

GC. ary et. al.
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Figure 10. An influence of the multiple scattering on the Cherenkov radiation
spectral distribution. The curves 1 and 2 have been calculated with and without
account of the multiple scattering respectively. The curves have been calculated for
Be target, 1/γ

√
χ′

max = 0.11, χ′
max = 0.05, the collimator angular sizes ∆Θx =

0.2
√

χ′
max, ∆Θy = 0.3

√
χ′

max and incidence angle ϕ = 0.1
√

χ′
max.

the simple model of semi-infinite multilayer nanostructure can be used
for calculations. Keeping in mind fundamental aspects of the discussed
problem only, we shall restrict our consideration to the specific case of
the emitting electron moving with a constant velocity v = e1(1− 1

2γ−2)
(see formulae (2)). Determining the unit vector n to the direction of
emitted photon propagation by the formula (2) and using general results
[17, 19] one can obtain the following expression for the spectral-angular
distribution of emitted energy

dE

dω d2Θ
=

2∑
λ=1

|Aλ|2, (18)

where

Aλ =
e

π
Θλ

(χ′
g + iχ′′

g)αλ

∆ − χ′
0 + δ′λ − i(χ′′

0 + δ′′λ)
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Figure 11. Cherenkov X–ray radiation from a multilayer X–mirror. Designations
are the same as in Fig.1

×
[

1
γ−2 + Θ2 − ∆ − δ′λ + iδ′′λ

− 1
γ−2 + Θ2

]
,

∆ = 2 sin2
(ϕ

2

)[
1 − ω

ωB
+ (θ′ + Θ‖) cot

ϕ

2

]
,

α1 = 1, α2 = cos ϕ,

and

δ′λ =
sign(Dλ)√

2

√√
C2

λ + D2
λ + Cλ,

δ′′λ =
1√
2

√√
C2

λ + D2
λ − Cλ,

Cλ = (∆ − χ′
0)

2 − (χ′
g
2 − χ′′

g
2)α2

λ − χ′′
0
2,

Dλ = 2[χ′′
0(∆ − χ′

0) + χ′
gχ

′′
gα

2
λ],

with Θ1 = Θ⊥, Θ2 = 2θ′ + Θ‖, Θ2 = Θ2
1 + Θ2

2, and χ′
0, χ

′′
0 the real

and imaginary part of the average dielectric susceptibility χ0. The Bragg
frequency is ωB = g/2 sin(ϕ/2), and finally χ′

g =
(
sin
(
π a

t

)
/π
)
(χ′

a−χ′
b),

and χ′′
g =

(
sin
(
π a

t

)
/π
)
(χ′′

a − χ′′
b ).
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The total emission amplitude Aλ in (18) can be represented in the
form

Aλ = APXR
λ + ADTR

λ ,

APXR
λ =

e

π

Θλ

γ−2 + Θ2 − χ′
0 − iχ′′

0

(χ′
g + iχ′′

g)αλ

γ−2 + Θ2 − ∆ − δ′λ + iδ′′λ
,

ADTR
λ = − e

π
Θλ

[
1

γ−2 + Θ2
− 1

γ−2 + Θ2 − χ′
0 − iχ′′

0

]

×
(χ′

g + iχ′′
g)αλ

∆ − χ′
0 + δ′λ − i(χ′′

0 + δ′′λ)
,

where APXR
λ describes the contribution of parametric X–rays, whereas

ADTR
λ is the amplitude of diffracted transition radiation [19]. It is clear

that the Cherenkov like contribution to total emission yield is determined
Obviously,

DTR amplitude has no poles (Cherenkov pole γ−2 − χ0 + Θ2 = 0 is
spurious because it disappears due to an interference between DTR and
PXR, the reflection coefficient described by the last factor in the formula
for ADTR

λ has no poles close to real axis, as is easy to see taking into
account the structure of the coefficients δλ and Cλ from (18)). Thus, the
possible contribution of diffracted Cherenkov radiation is determined by
PXR emission amplitude only, because the equality γ−2+Θ2−∆−δλ = 0
can be fulfilled.

Let us consider the field of existence of the maximum in PXR reflex
neglecting initially the influence of photoabsorption (χ′′

0 = χ′′
g = 0). The

equation of PXR maximum realization

∆0 − ∆′ − sign(∆′)
√

∆′2 − χ2
gα

2
λ = 0

∆0 = γ−2 − χ0 + Θ2, ∆′ = ∆ − χ0

has the solution

∆′ =
∆2

0 + χ2
gα

2
λ

2∆0

in two non-overlapping ranges of the values of the parameter ∆0.
The first of them determined by the inequality

∆0 > |χgαλ|

corresponds to the branch of ordinary PXR. The second one determined
by the inequality

∆0 < −|χgαλ|

(20)

by the terms in (20) characterized by pole like singularity.

(21)

(22)

(23)

(24)
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corresponds to Cherenkov branch of PXR. This radiation can appear
only with the proviso that the Cherenkov condition ∆0 < 0 is fulfilled.

Since |∆′| > g λ both branches are
realized outside the region of anomalous dispersion. Radiation corre-
sponding to these branches can appear inside the region of anomalous
dispersion |∆′| < |χgαλ| having regard to photoabsorption, but the yield
of this radiation is small, as the performed analysis has shown.

Let us estimate the greatest possible spectral angular density of the
discussed emission mechanism. By assuming that χ′′

0,g � χ′
0,g, one can

obtain from (18) the following simple formula

(
dNλ

dω d2Θ

)
max

≈ e2

π2

1
ω

(
χ′

gαλ

∆0

)2(Θλ

δ′′λ

)2

,

δ′′λ = χ′′
0

∣∣∣∣∣
∆2

0 + (χ′
gαλ)2

∆2
0 − (χ′

gαλ)2

∣∣∣∣∣− χ′′
gαλ

∣∣∣∣∣
2∆0χ

′
gαλ

∆2
0 − (χ′

gαλ)2

∣∣∣∣∣ ,

∆0 < −χ′
gαλ

√√√√1 −
(

2
χ′′

0 − χ′′
gαλ

χ′
gαλ

) 2
3

≈ −χ′
gαλ,

describing the Cherenkov branch of PXR.

tion are of the same magnitude in the frequency range, where |∆0| ≥
|χ′

gαλ|. Thus, the discussed emission mechanism based on self-diffracted
Cherenkov radiation is of interest for X–ray source creation.

The structure of emitted photon flux calculated by the general formula
(18) for Be − C multilayer nanostructure is illustrated by the curves
presented in Fig.12 and Fig.13. The period of nanostructure T and the
orientation angle ϕ/2 were chosen so that the Bragg frequency ωB and
the frequency corresponding to maximum in real part of Be dielectric
susceptibility were close to each other. Presented figures demonstrate the
strong dependence of the emission angular distribution on the orientation
angle. Distribution presented in Fig.12 has been calculated for fixed
energies of emitting electrons and emitted photons. Large value of the
angle ϕ > π/2 has been used in the performed calculations. On the other
hand, distribution presented in Fig.13 has been calculated for the small
values of the angle ϕ < π/2. It is crucial for the purposes of X–ray source
creation that the presented distributions are strongly non-uniform. This
property analogous to that discussed in the previous sections of the paper
allows to increase the yield of strongly collimated radiation.

GC. ary et. al.

|χ α | as it is obvious from (22),

(25)

Obviously, the density (25) and that for ordinary Cherenkov radia-
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Figure 12. Spectral-angular distribution of Cherenkov radiation from multilayer
X–mirror. The curve has been calculated for the fixed values of the parameters:
1/γ

√
χ′

a max = 0.2, θ′/
√

χ′
a max = 0.53, ωB = ω = 111.6eV, ϕ = 162◦, a/T =

0.9, χ′
a max

5. Relative contribution of free and virtual
photons to the formation of PXR yield

It should be noted that the model of PXR process used in above
calculations does not take into account the contribution of real photons
of diffracted bremsstrahlung to the formation of total emission yield since
PXR cross-section was calculated for rectilinear trajectory of emitting
electrons. As a consequence, only the contribution of actually parametric
X–rays appearing due to the Bragg diffracted of virtual photons of the
fast electron Coulomb field was taken into consideration in the performed
analysis.

The discussed question concerning the relative contributions of indi-
cated emission mechanisms to total emission yield is of interest for the
problem of PXR based X–ray source creation because recent experiments
[10, 11] pointed to a discrepancy between obtained data and the theory
based on averaging of the ordinary PXR cross-section over multiple scat-
tering angles. An exact statement of the discussed problem based on the

pansions used in [20] allow to describe the case of thin enough target
only, when the influence of multiple scattering is small. Currently the

kinetic equation approach was used in work [20]. Unfortunately, the ex-

= 0.05 (Be).
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Figure 13. The same but for θ′/
√

χ′
a max

exact approach was used to analyze the influence of multiple scatter-
ing on the PXR spectral width [21, 22], but the question providing the
subject matter for the present section.

Let us consider PXR process in more detail as compared with that
in previous section of this paper. Starting from well known equations of
dynamical diffraction theory [23]

(k2 − ω2(1 + χ0))Eωk − k(k,Eωk) − ω2
∑
g

′χ−g(ω)Eωk+g = 4πiωJωk

where Eωk is the Fourier-transform of the electric field, χ0 and χg

are the components of the crystalline dielectric susceptibility ε(ω, r) =
1 + χ0(ω) +

∑
g

′χgei(g,r), Jωk is the Fourier-transform of the emitting

electron current density, one can obtain on the basis of well known meth-
ods [23] the following expression for an emission field, propagating along
the direction of Bragg scattering

Eλk+g =
4πiω3χgαλ

Dλ
(eλk,Jωk),

Dλ = (k2 − ω2(1 + χ0))((k + g)2 − ω2(1 + χ0)) − ω4χgχ−gα2
λ,
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◦= 0.7, ϕ = 44 .

(26)

(27)
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where Eωk+g =
2∑

λ=1

eλk+gEλk+g, eλk and eλk+g are the polarization

vectors, (k, eλk) = (k + g, eλk+g) = 0, g is the reciprocal lattice vector
(see Fig.11).

To determine an emission spectral-angular distribution one should
calculate Fourier-integral ERad

λ =
∫

d3kg ei(kg ,n)rEλ k+g in the wave-
zone by the stationary phase method (here kg = k + g, n is the unit
vector to the direction of emitted photon propagation). The result of
integration has the form

ERad
λ =

4π3iω3χgαλ√
∆′2 + ω2χgχ−gα2

λ(1 − (n,g)/ω)

×
[
(eλk+ ,Jωk+)eiξ+r − (eλk− ,Jωk−)eiξ−r

] eiωr

r
,

ξ± =
1

2(1 − (n,g)/ω)

[
−δ′ ±

√
δ′2 + ω2χgχ−gα2

λ(1 − (n,g)/ω)
]

+
ω

2
χ0,

δ′ =
g2

2ω
− (n,g)

(
1 +

1
2
χ0

)
, k± = (ω + ξ±)n − g

For the further analysis it is very convenient to introduce the angular
variables Θ and Ψt by the formulae analogous to (2).

spectral-angular distribution of the number of emitted photons:

dNλ

dω d2Θ
=

e2ω|χg|2α2
λ

8π2

1
δ2 + χgχ−gα2

λ cos ϕ

× Re

〈∫
dt

∞∫

0

dτ Ωλ tΩλ t+τe−iωτ

×
[
ei(k+,(rt+τ−rt)) + ei(k−,(rt+τ−rt))

]〉
,

where δ = δ′/ωB, Ω1t = Θ⊥ − Ψ⊥t, Ω2t = Θ‖ + Ψ‖t + 2θ′, θ′ is
the orientation angle (see Fig.11), the value θ′ = 0 corresponds to exact
Bragg resonance orientation of the crystal relative to emitting electron
velocity, the brackets 〈〉 mean the averaging over all possible trajectories
of electrons in the target rt ≡ r(t), the angle Ψt is the time-dependent
quantity because of multiple scattering.

(28)

(29)

Using (2) and (28) one can obtain the following expression for the

In accordance with (29) two
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branches of propagating in the crystal electromagnetic waves take the
contribution to total emission yield within the frame of used dynamical
diffraction approach.

scribed in book [3], where an influence of multiple scattering on the
ordinary bremsstrahlung from relativistic electrons, moving in amor-
phous medium, has been considered in detail. Using the corresponding

intensity

dNλ

dt dω d2Θ
= e2ω|χg |2

4π2

Ω2
λ tα

2
λ

σ2
λ

Re
∞∫
0

dτ
cos(ω

2
σλτ)

cosh2(
√

2iωqτ)

× exp
(
− iω

2 (γ−2 − χ0 − δ)τ −
√

iω
8qΩ2

t tanh(
√

2iωqτ)
)
,

where σ2
λ = δ2 + χgχ−gα2

λ cos ϕ, q = 1/4LScγ
2.

that the diffracted bremsstrahlung contribution can be substantial. The
emission angular density

dN

d2Θ
=

L∫

0

dt

∫
d2Ψt f(t,Ψt)

∞∫

0

dω

2∑
λ=1

dNλ

dt dω d2Θ

in the most suitable characteristic for our purposes because this charac-
teristic is very sensitive to the action of multiple scattering.

photon energies keeping in mind that the emission considered in this
section is concentrated in the narrow vicinity of ω = ωB, because the
Bragg diffraction process extracts this segment of initially wide spectra of
both real photons of bremsstrahlung and virtual photons of the emitting
electron Coulomb field. Taking into account that ω ≈ ωB

integration by the transformation of variables dω =
(

dδ
dω

)−1
dδ. The

result of integration has the following form

dNλ

dt d2Θ
= −e2ω4

B|χg|2
2πg2

Ω2
λ tα

2
λ

Ω2
t βλ

Im
{[

βλ + i
(

1
γ2

− χ0

)]

×
∞∫

0

dτ exp
[
−ωB

2

[
βλ + i

(
1
γ2

− χ0

)]
τ
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Procedure of averaging of the expressions analogous to (29) is de-

results [3] one obtain from (29) the final expression for the total emission

(30)

Let us use the general result (30) to elucidate the conditions such

(31)

First of all let us integrate the intensity distribution (30) over emitted

in (30) except

(32)

fast variable δ(ω) (so-called resonance defect) one can perform the“ ”
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−
√

iωB

8q
Ω2

t tanh
(√

2iωBqτ
)]}

,

where β2
λ = χgχ−gα2

λ cos ϕ (we are considering the parametric X–rays
for Laue geometry, so ϕ < π/2).

and diffracted bremsstrahlung contribution. To estimate the relative
contribution of diffracted bremsstrahlung let us compare the exact result
for the total emission angular density dN

d2Θ

a constant velocity. The last case corresponds to the limit q → 0 in

distribution

dNλ

dt d2Θ
→ dN0λ

dt d2Θ
=

e2ω3
B|χg|2
πg2

Ω2
λ tα

2
λ

(γ−2 + γ−2
m + Ω2

t )2 + β2
λ

,

where γm = ωB/ω0 (ω0 is the plasma frequency).
Calculating the quantity dN

d2Θ
we have restricted our selves to the case

of small incidence angle ϕ � 1, when α2 = cos ϕ ≈ α1 = 1. Such
conditions are most appropriate for the diffracted bremsstrahlung con-
tribution to be substantial. Using the distribution function (8) and per-

t one can obtain
the following expression for dN/d2Θ:

dN

d2Θ
=

e2ω3
BLSc

πg2
F,

F = −η Im



(

1 +
γ2

γ2
m

(1 − iη)
) ∞∫

0

dt coth(t)

× exp
[
−
√

i
(

1 +
γ2

γ2
m

(1 − iη)
)

γL

γ
t

]

×


E1




√
iγ2Θ2

0
γL
γ tanh(t)

1 +
√

i
(

L
LSc

+ γ2Ψ2
0

)
γL
γ tanh(t)




−E1

( √
iγ2Θ2

0
γL
γ tanh(t)

1 +
√

iγ2Ψ2
0

γL
γ tanh(t)

)]
,

where γL =
√

ωBLSc/2, η = |χg/χ0| < 1, Θ2
0 = Θ2

⊥ + (2θ′ + Θ‖)2.

(33)

The emission intensity (32) takes into account both parametric X–rays

, following from (31) and (32),
with that, following from the general formula (31) and simplified formula
(32) corresponding to the emission from a fast electron moving with

(32), when this formula can be reduced to the ordinary PXR angular

forming the integration in (31) over scattering angles Ψ

(34)
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The function F (γΘ0) describing the contribution of both actually
PXR and diffracted bremsstrahlung must be compared with analogous
function

F0 = −η Im
{(

1 +
γ2

γ2
m

(1 − iη)
)

×
∞∫

0

dt√(
1 + γ2

γ2
m

(1 − iη) + γ2Θ2
0 + t

)2
− 4γ2Θ2

0t

×
[
E1

(
t

L
LSc

+ γ2Ψ2
0

)
− E1

(
t

γ2Ψ2
0

)]}
,

taking into account the contribution of PXR only and following from (37)
The difference between these functions depends strongly on

the parameters γ/γm and γ/γL. The physical meaning of the parameter
γ/γm = γω0/ωB is very simple. This parameter describes an influence
of the density effect on PXR and bremsstrahlung emission mechanisms.
Screening of the Coulomb field of emitting relativistic electron due to
the density effect occurring in the range γ > γm is responsible for PXR
yield saturation as a function of the energy of emitting electron [14].
Changing of an emitted photon phase velocity due to the polarization
of medium electrons is responsible for bremsstrahlung yield suppression
(Ter-Mickaelian effect [3]) in the frequency range ω < γω0 (in the case
ω ≈ ωB under consideration this inequality is equivalent to γ > γm).

The parameter γ/γL describes an influence of another classical elec-
trodynamical effect in the physics of high energy particle bremsstrahlung
known as Landau-Pomeranchuk-Migdal effect (see [3]). LPM effect arises
with the proviso that the multiple scattering angle of emitting particle
ΨCoh achievable at the distance of the order of so-called formation length
lCoh ≈ 2γ2/ω (lCoh ≈ 2γ2/ωB in the case in question) exceeds the char-
acteristic emission angle of emitting particle Ψem ≈ γ−1. Obviously,
Ψ2

Coh = 1
γ2LSc

2γ2

ωB
= γ−2

L , so that γ/γL = ΨCoh/Ψem and therefore the
condition γ > γL means LPM effect manifestation.

Let us consider the distribution F (γΘ0) in the range of small emitting
particle energies γ � γL

the effective values of the variable in integration teff � 1 in conditions
under consideration independently of the parameter γ/γm. Because of

one
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(35)

and (33).

. Close inspersion of the integral (34) shows that

this, tanh(t) ≈ t and the formula (34) can be reduced to more simple
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F → −η Im



(

1 +
γ2

γ2
m

(1 − iη)
) ∞∫

0

dt

t
exp

[
−
(

1 +
γ2

γ2
m

(1 − iη)
)

t

]

×


E1


 γ2Θ2

0t

1 +
(

L
LSc

+ γ2Ψ2
0

)
t


− E1

(
γ2Θ2

0t

1 + γ2Ψ2
0t

)




The performed numerical analysis has shown that the function F0(γΘ0)
0

PXR characteristics are well described with the constraint γ � γL within
the framework of ordinary PXR theory based on the calculation of PXR
cross-section using the rectilinear trajectory of emitting particles. To
explain this conclusion it is necessary to note that in conditions γ � γL

under consideration the trajectory of emitting particle is close to stright
line at the distance of the order of lCoh for which the emitted photon is
formed (the used expansion tanh(t) ≈ t implies that the bend of elec-
tron’s trajectory is neglected). As this takes place, the structure of the
emitted electron electromagnetic field consisting of both virtual photons
of the electron Coulomb and free photons of the bremsstrahlung is close
to that for the electron moving along the rectilinear trajectory with a
constant velocity. As a consequence, the structure of the diffracted by
crystalline atomic planes electromagnetic field differs little from the or-
dinary PXR field.

In the opposite case γ > γL the velocity of emitting electron turns
through the angle ΨCoh > γ−1 at the distance lCoh. Since the value γ−1

is the scale if angular distribution of virtual photons associated with the
electron’s Coulomb field, the structure of total electromagnetic field of
emitting electron differs substantially from that for the electron moving
along the rectilinear trajectory. Because of this the structure of dif-
fracted field is changed substantially as well. Relative contribution of
diffracted bremsstrahlung depends in the case in question on the para-
meter γ/γm. This contribution is small if γ > γm and bremsstrahlung is
suppressed by Ter-Mikaelian effect. On the other hand, the contribution
of diffracted bremsstrahlung can be very essential if γ < γm, but γ > γL

(obviously, both these inequalities can be valid simultaneously with the
proviso that γL < γm only).

The discussed results are demonstrated by the Fig.14 and Fig.15,
0 0 0

dict the dominant contribution of the diffracted bremsstrahlung to total
emission yield under special conditions.

(36)

in (35) and the modified function F (γΘ ) in (36) coincide. By this means

and (35) respectively are presented. The curves presented in Fig.15 pre-
where the functions F (γΘ ) and F (γΘ ) calculated by the formula (34)
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Figure 14. The emission angular density with and without diffracted
bremsstrahlung contribution. The presented functions F (x) and F0(x) defined by
(32) and (33) have been calculated for fixed values of the parameters L/Lsc = 0.5,
η = 0.8, γL/γm = 0.5 and γm

Figure 15. The same but for γm

6. Conclusions
Performed analysis has shown that the angular density of X–rays pro-

duced by X–ray sources based on Cherenkov and quasi-Cherenkov emis-
sion mechanisms can be increased substantially in conditions of grazing
incidence of emitting electrons at the surface of a radiator, when the
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/γ = 5.

/γ = 0.3.
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angular distribution of emitted photons becomes strongly non-uniform.
Owing to this fact, most part of emitted photons is concentrated in the
small region of observation angles resulting in the high yield of collimated
radiation.

In the case of Cherenkov X–ray source the discussed non-uniformity is
caused by the strong dependence of a photoabsorption coefficient on the
direction of emitted photon propagation. In accordance with performed
calculations an increase in the emission angular density of the order of
5− 10 and more possible in the range of incidence angles of the order of
Cherenkov emission angle.

The analogous enhancement of the emission angular density is possi-
ble for PXR source (in the case being considered the anisotropic angular
distribution of emitted photons is caused by the dependence of PXR
reflection coefficient on the photon energy and strong connection of this
energy with the observation angle given by the condition of Bragg dif-
fraction). On the other hand, the growth of PXR angular density with
decreasing the emitting electron incidence angle relative to reflecting
crystallographic plane of the crystalline target is attended by substan-
tial growth of the spectral width of emitted photon flux.

Cherenkov X–ray radiation is possible not only in homogeneous media
but in multilayer periodic nanostructure as well. An advantage of the
last scheme consists in the possibility to generate X–rays at large angles
relative to emitting electron velocity and consequently to arrange an irra-
diated sample in the immediate vicinity of the radiator. The performed
calculations have shown the possibility to obtain in this scheme the in-
tensity and angular density of emitting photons close to that achievable
in the ordinary scheme used the homogeneous target.

Analysing the relative contributions from diffracted bremsstrahlung
and PXR to the total emission yield from relativistic electrons crossing a
crystal shows that diffracted bremsstrahlung can dominate under special
conditions as elucidated in this note.
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