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One-dimensional stochastic model that describes radiative heat transfer in dielec-
tric medium is built. It is done on the basis of representation that heat transfer in a
solid is realized both by means of its heat conductivity and by means of the heat
electromagnetic radiation which is generated by thermal fluctuations in the medium. It is
supposed that electromagnetic fluctuations are caused by thermal vibrations of solid
skeleton connected with irradiation and absorption processes of photons. In the difference
with previous works, it permits to formulate the stochastic model without using the
supposition of susceptibility fluctuations and not to use the additional mathematical
averaging on temporally slow process of thermal conductivity. It leads to the model in the
form of the infinite dimensional Ornstein-Uhlenbeck process using the classic fluctuation-
dissipative theorem. The energy flux of fluctuating electromagnetic field is calculated as
a functional of the local temperature.
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ITocTpoena croxacTuuecKas MOJeNb AJS OMHUCAHUA OMHOMEPHOTO PAAUAIlMOHHO-KOHIYK-
TUBHOTO TeTJIoOOMeHa B AMIIEKTPUUECKOU cpeme. Mogedb KOHCTPYUPYETCS HA OCHOBE TIpef-
CTABJIEHUS O TOM, UTO MEPEHOC TelJja B TBEPAOM Teje, B JOTOJHEHUE K €T0 TEeTJIONPOBOIHOC-
TH, OCYIIECTBJISETCA TAKiKe IMOCPEACTBOM IepPeHOoca TEIMJOBOTO JIEKTPOMATHUTHOTO M3JyUe-
HUA, TTOPOIKAEMOTO TEILIOBBIMU PIAYKTyanuaMu B cpexme. Ilpeamomaraercsa, uTo QIyKTyanunn
9JIEKTPOMATHUTHOTO TIOJIA BBHI3BAHBI TEIJIOBRIMU KOJI€OAHUAMU TBEPOTO OCTOBA TIPU MBJyUe-
HUM U TOTJIOMIEHUN (POTOHOB. OTO TO3BOJSAET, B OTJIUUNE OT TMPEALIAYIIUX paboT, chopmyau-
POBATb CTOXACTHUUECKYIO MOJEJNEL 0e3 MCIOMBL30BAHNSA TTPEATIONOKEHUA 0 QAYKTYAIUaxX 9JIeKT-
PHUUECKOI BOCUPUUMYWBOCTU U He WCIOJb30BATH JOTOJHUTENLHOE YCpeAHEeHHe MO MeaJeH-
HBIM TeIJIOBBIM TIpolleccaM. B pesyabrTaTe, Ha ocHOBe (MIYKTYAIIMHHO-THUCCUTIAITIMOHHOMN
TEOPEMEI, TIONYUAETCA MOJAedb B BHUJe GecKoHeuHOMepHOTO mpoliecca Opumiteiina-yneHbekra.
Brruncasercsas moTox sHepruu QIYKTYAIMOHHOTO 3JEKTPOMATHUTHOTO TOJS B BuAe PyHKITU-
OHAJIa OT JOKAaJLHOM TEeMIepaTyphI.

OgHoBHMipHA CTOXaCcTHYHA MOAENh PpagialiiHO-KOHAYKTHUBHOrO TeILIOOOMiHYy.
I0.I1.Bipueuro, Jlam Tan ®@am.

ITo6ymoBaHo CTOXACTUYHY MOIE]b JJIS ONUCY OJHOBHMIPHOro pagiamiliHO-KOHIYKTHUBHOI'O
Temo00Miny y mieslekTpuuHOMY cepemoBuiii. Mogeas yTBOPIOETHCH HA IIigcTaBi yABIeHHHA,
IO II€pPeHeceHHs TeIlla y TBEPAOMY CEpPeIOBHIIli, Y MOIOBHEHHI J0 HOro TeIJIoIpoBigHOCTI,
BUKOHYETBCA TAKOMK BHACIIJTOK IIEPEHECEeHHS TEIJOBOI'0 3JIeKTPOMATHITHOIO BHUIIPOMIHIOBAH-
Hd, [0 IOPOMMKYEThCA TeIIoBUMU QayKTyauniamu y cepegosulri. Ilpunycraerscs, mo QIyK-
Tyanil IoB’sg3aHi 3 TEIJIOBUMM KOJMBAHHAMU TBEPLOI'0 OCTOBY BHACJIJZOK BUIPOMIHIOBAHHS
Ta morauHaHHA GoroHiB. Ile mo3BONAE cHOPMYAIOBATH CTOXACTUUYHY MOENb 0e3 BUKOPUCTAH-
HA OPUIIyIeHHA Ipo (GuyKTyamii eleKTpuYHOI CXHJIBHOCTI Ta HE BUKOPHCTOBYBATHU yCEPEJ-
HEeHHS 34 IOBiIBHMMM TEIJIOBUMH IIpollecaMu. ¥ peadyJabTaTi Ha migcrasi duaykryaiiiiHo-
aucinaiiiinol TeopeMu OLepPIKAHO MOJeNb YV BUIVIALL HeCKiHueHHOBUMipHOTO npouecy OpHii-
TeliHa-Yaeubexa. OOumcieHo crpyMm eHepril (uyxkryamifiHOro »JI€KTPOMATrHITHOrO IOJH VY
BUMIALL (pyHKIioHAJY Big JIOKAJBbHOI TeMIepaTypu.
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1. Introduction

Heat transfer in solids is realized by two mechanisms: firstly, via the heat conduc-
tivity and, secondly, by the electromagnetic radiation transfer in them which is gener-
ated by thermal fluctuations of local thermodynamic state. Accordingly, the evolution
equation for the temperature 7T(x,t) distribution at the time moment ¢ can be written
phenomenologically in the form (see, for example, [1- 3].

pIT(x,t) = 2AT(x,t) — (V,S)(x,1), (1)

where > > 0 is the thermal conductivity coefficient of the medium, p is medium density and ¥ is its heat
capacity, where it is supposed that these values do not depend on temperature. The vector field S(x, ¢)
represents the energy flux of electromagnetic radiation which is generated by fluctuations of charges and
currents induced in the medium. It is assumed that the value (V, S(x,t)) multiplied to small volume AV
of the medium region which is concentrated near the point x, is equal to the part of electromagnetic flux
that is spent on heating of this area at the time ¢. Account of this term is significant when heat transfer
problems are solved in optically semitransparent media with small electrical conductivity and it is impor-
tant when there are relatively large temperature differences during the distance being characteristic for
the physical situation under consideration. In order to obtain the solution of each heat transfer problem
in cases pointed out, it is necessary to obtain a closed evolution equation for T'(x,¢). This requires the
explicit form of the functional S(x,¢) = S[T'(x,¢)] which converts Eq. (1) into the self-consistent one.

Usually, the energy flux S(x,t) is constructed phenomenologically in the framework of so-called ra-
diative transfer theory. It is done on the basis of geometric optics and Kirchhoff’s law about intensities of
electromagnetic field radiation and its absorption (see, for example, [1-4]). The thermal electromagnetic
field is absent in these constructions. Such a state is unsatisfactory from theoretical point of view. It is
connected with the absence of successive microscopic theory of radiative heat transfer in media which
should be constituted on the quantum theory both irradiation and absorption of thermal photons in
solid-state medium. For this reason, such a theory should be statistical.

Here, we dot not concern to detail analysis of those problems which are necessary to solve when the
construction of microscopic theory of radiative heat transfer is built in the framework of statistical physics
(see, [5-7]). We point out only that the beginning of statistical approach development in the theory of
radiative heat transfer was initiated in the Rytov works which are summarized in the monographs [8,9].
In connection with the complexity at microscopic theory constructing of radiation heat transfer, S.M.
Rytov with his collaborators used semi-phenomenological statistical approach. In frameworks of it, the
stochastic electromagnetic field is introduced in the theory. At this, the field satisfies Maxwell’s equations
but any microscopic mechanism of its energy transition into heat is not concretize. It allows to avoid the
description of quantum processes of irradiation and absorption that it is reasonable from theoretical point
of view since the heat transfer by radiation is not a quantum effect. Stochastic electromagnetic field arises
in the theory due to charges thermal fluctuations and electric currents which induced in the medium due
to them despite to very small electrical conductivity. Amplitude of these fluctuations increases with the
temperature so that at sufficiently large its value, thermal atomic (ionic) vibrations bring to fluctuations
of electrical charges on spatial scales of several interatomic distances order in dielectric medium. Average
value of them may be essential for the account of generated thermal radiation.

In this work we construct the stochastic model of radiative heat transfer within the frameworks of
the described semi-phenomenological approach. In contrast to the model proposed earlier in [5-7], it is
based on explicit statistical description of thermal fluctuations of charges and currents in the medium.
It is more successive from the theoretical point of view. Because to the complexity of used mathemati-
cal structures, we consider only one-dimensional temperature distribution and, consequently, we analyze
one-dimensional radiative heat transfer.
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2. Model construction

We start using the fact that the thermal electromagnetic field defined by the pair {E(x,t), H(x, )}
at each space-time point {x,¢} is the stochastic one (here and after, we denote all random functions by
the sign "tilde"). Then, this pair determines the density of the energy flux

S(x,t) = —[E, H|(x, 1) (2)

C
o
which is also random field. Thermal electromagnetic field varies rapidly over distances of characteristic
wavelength (~ 10~*cm) order corresponding to thermal (red and infra-red) radiation and, accordingly,
during temporal periods about ~ 10~™s. At the same time, the characteristic time connected with the
thermal conductivity process in solid dielectrics should be estimated by the ratio of the squared character-
istic length of thermal nonuniformity to the temperature conductivity coefficient. If we take interest the
thermal characteristic time for the characteristic nonuniformity of the 1 cm order, then we have its value
10 = 10%s (for example, the SiO, (quartz) temperature conductivity value (s¢/p9) is equal approximately
4-10"2cm? /s, see [10]).

Therefore, the density of the energy flux (2) should be averaged over spatial regions having the scale
much more greater than the characteristic wavelength of stochastic electromagnetic field, but it is much
more smaller than the characteristic length of thermal conductivity process. Besides, it should be also
averaged over temporal intervals which have the duration much more greater than the characteristic vi-
brational period of thermal radiation, but it is much more smaller than the characteristic time of thermal
conductivity. Such an averaging permits to take not into account the space and temporal changes of the
divergence of radiative flux density (V,S(x,t)) which are very rapid and small, therefore, there is not
their influence on the heat transfer process. The pointed out space-time averaging is equivalent to aver-
aging on probability distribution of stochastic electromagnetic field when the field pair {E(x,t), H(x,t)}
possesses the ergodicity property. Thus, the field energy flux density that is used in Eq.(1) is determined
by the average value S(x,t) = ( S(x,t)) (here, angle brackets denote the averaging on the probability dis-
tribution). Thus, to formulate the heat transfer problem being closed from the mathematical viewpoint,
it is necessary to built an adequate stochastic model of thermal electromagnetic field and to calculate,
on its basis, the flux density S(x,¢) by the averaging pointed out.

The stochastic electromagnetic field is represented by random realizations which satisfy the system of
stochastic Maxwell equations in confinuum dielectric medium when its dispersion is neglected,

c R A7~ . ~ A7
- A v,Aa BE)="5
o T V,H], (V,E) — 7
) (3)
OH . .
BCC - V.El (V,H) - 0.
c Ot

Here, E u H are intensities of electrical and magnetic fields of thermal radiation generated by heated
medium. At this, ¢ and ¢ are electric and magnetic permeabilities of uniform dielectric medium, corre-
spondingly, which do not depend on {x,t}.

Really, coefficients ¢ = £(7") and p = u(T) depend on temperature. Such dependencies are essential
at large temperature gradients on distances having the order of characteristic scale of medium sample
under consideration. Therefore, generally speaking, it is necessary to take into account in problems of
radiative heat transfer when such gradients are present. Since temperature values in dependencies pointed
out should be equal to the local temperature 7'(x,t), then the Maxwell equations should have spatial and
temporal derivatives of e(T'(x,¢)) and p(7'(x,?)). But, their magnitudes are very small due to pointed
out slow dependencies in comparison with scales of length and temporal interval being characteristic of
thermal radiation. Therefore, these derivatives we do not taken into account in Eqgs.(3).

Random functions j, /5 in Eqs. (3) are densities of electric current and charge which are generated
at microscales of the characteristic wavelength order due to thermal fluctuations. They represent some
spatially distributed stochastic sources for Egs.(3) which are supposed as given ones by the model under
consideration. Random realizations of stochastic fields are fully determined by Egs. (3) if these sources are
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known. As concerns to boundary conditions of the problem which are very important (see, [5-7]), in this
work, we consider the simplest situation from physical viewpoint when the dispersal of located thermal
inhomogeneity is studied in infinite medium. So, the temperature distribution the medium converges to
a constant value when x goes to infinity.

The equation system (3) is overfull. Therefore, it is necessary the consistency condition for it. It is
well-known that such a condition is expressed in the form of the continuity equation

F+(V.3) =0 (4)

and the sources j, p should be submitted to it.

The current density is represented as a sum of stochastic electromagnetic field source (it is an internal
"electromotive force" of the medium) which arises due to thermal fluctuations and, besides, the current
density induced by electromagnetic field which is expressed in the form of Ohm’s law oE. The coefficient
o > 0 plays the role of conductivity in this law, but it is not a genuine macroscopic medium conductivity.
It performs an "effective conductivity". It differs from zero due to so-called fluctuation-dissipative theorem
(see, for example, [9]). The sense of theorem conjecture is connected with necessity of regular compensat-
ing term in stochastic equation with additive noise so that a stationary evolutional regime may exist. In
turn, the part of fluctuating current density which serves the stochastic source of electromagnetic field,
should contain with probability one the vortical part «(7'(x,t))@ (fluctuating "Foucault currents"), in
spite of the fact that charge motion occurs in dielectric medium (or high-resistance semiconductor). Here,
u(T'(x,t)) is the intensity of the source which depends on the local temperature 7' = T'(x,t). Thus, this
intensity can be varied spatially and temporally, but its variation is more slower in comparison with the
thermal electromagnetic fields one. Just the presence of vortical part is connected with the irradiation of
electromagnetic waves transferring heat in the medium. In connection with the dielectric medium nature,
the fluctuating current (namely, its correlation function) is concentrated at small spatial scales which
have the interatomic distance order.

Thus, the density j should be replaced by uw(T)@ + oE in equations (3) and (4). As a result of such
a replacement, we obtain the first equation of the system (3) in the form of a stochastic equation with
additive noise

OE - 47 c - 4o
B DT = SV, | -7 5
5 THE+—ule=-[V.H], 7v=— (5)
Respectively, Eq. (4) has the form
Bt i (V,ulT)@) = 0 (6)

where, as in above, we neglect spatial derivatives from the temperature distribution. Here, the coefficient
o, in general case, should be also depend on the local temperature that is varied slowly with x and ¢, but
we shall also neglect this dependence in stochastic equations (5) and (6) as we already have done.

We consider the random field ¢ as the gaussian one due to its small intensity. Besides, we suppose
that it has zero average value (¢(x,t)) = 0. At last, we consider that {5(x,t)) = 0. Then, the field ¢ is
fully determined by its pair correlation function Kj, j,(x1 — X2,t1 — t2) = (@, (X1, t1)Pj, (X2,t2)). Such
a form of correlation function means that the field ¢(x,¢) is stochastically spatially uniform and it is
temporally stationary. Then, at the neglect of slow x and ¢ dependencies of the local temperature, the
source u(1)p(x,t) in Egs.(5),(6) is a stochastically uniform and stationary random field. Besides, we
consider that the field @(x,t) possesses the property of temporal reversibility. It means that, together
with the natural following property Kj,;, (x2 — x1,t2 —t1) = Kj, ;, (X1 — X2,t1 — ¢2), the pair correlation
function has the property Kj, ;, (X1 —Xo,t0 —t1) = K, j, (%1 —Xo,t1 — t9).

After above-described explicit definition of random process determining the stochastic source j(x,t),
the fluctuation electromagnetic field is defined completely. Let us introduce generalized Fourier decom-
positions of random realizations of stochastic fields E(x,t) u H(x,t),

E(x,t) = /E(k,t)exp[i(k7 x)]dk, H(x,t)= /ﬁ(k,t)exp[i(k,x)]dk. (7)
R3 R3
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Here, E(k,¢) and H(k,t) are generalized random fields relative to k € R®. Further, we substitute de-
compositions (7) in Eqgs. (3), (5), (6). Then, due to one-valuedness of their definition at each k € R3
on the basis of the Fourier decompositions, we obtain the finite equation system for generalized Fourier
transforms,

D B0t 9Bk + Ttk ) = Sk k), @
%I:I(k,t) - —%[k,ﬁ(k,t)], (k,E(k, 1)) = _? ikt), (kHkt)=0, (9)
P, 1) + vk, t) +i(k,jlk, 1)) = 0 (10)
where generalized Fourier transforms of charge distribution density realizations are introduced
poc.t) = [ ity explifhe )k (1)
e

and also generalized Fourier transforms j(k,t) of random field realizations u(x, ¢)p(x,¢) are defined by
the relation

w(T(x,1))p(x,1) = /i(k,t)exp[i(k,x)]dk. (12)
R3

The field j(k, t) is the complex-valued gaussian random one due to the field ¢(x,?) is gaussian. It has the
zero average value (j(k,t)) = 0. Due to the field (T (x,t))@(x,t) is real-valued, realizations of the field

*

j(k,t) have the property j (k,t) = j(—k,t) with the probability one. Therefore, this filed is characterized
completely by the correlation function K, ;, (ki,t1;ka,t2) = (55, (k1,t1)¢;, (k2,t2)) which is represented
by a positive matrix-function on k € R? and ¢.

Since the equation system is finite at each fixed k € R?, it is solved uniquely at given initial condi-
tions of generalized random realizations of the fields E(k,t), H(k,t), p(k,t). It means that the stochastic
model of thermal electromagnetic field described in this section is self-consistent from the mathematical
viewpoint.

3. Thermal radiation at quasistationary regime

Due to linearity of the equation system that determine generalized fields E(k,t) and H(k, ), the
electromagnetic field is the gaussian random one with zero average value, if the average value of the filed
p(k,t) is also equal to zero.

The initial conditions of mathematical expectations of all possible functions constructed on the basis
of the fields E(k,t), H(k, t) and p(k,t) are become inessential after a temporal period being much more
than the characteristic time 7 that associates with these fields. The time 7 is determined so that the
value A7—! has the order of medium average temperature multiplied to Boltzman’s constant x. Since
the field @(x,t) is temporally stationary, then the stochastic fields {E(k,t), H(k,?)} submitted to Eqs.
(8)-(10) one may consider as stationary random processes, if we neglect the temporal dependence of the
temperature distribution 7'(x,¢) in the amplitude «(7'(x,t)). In such a situation, it is naturally to pass
from evolution Egs. (8)-(10) to equations for spectral decomposition amplitudes of corresponding fields
which are generalized functions on the frequency w (if we do not take into account the so-called singular
constituent of the spectral measure (see, [11, 12]),

E(k,t) = /é(k,w)ewdw, H(k,t) = /ﬁ(k,w)eiwtdw, (13)
jk,t) = / ik, w)e™dw, Bk t)= / ok, w)e™ dw . (14)
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Substituting those decompositions into Egs. (8-10) and using the single-valuedness of Fourier transforms,
we obtaine the self-consistent system of equations:

0Bl w) + A&k w) + il w) = i Al w)], (15)

~ c ~ ~ dmy ~
H(k,W) - _M_w[k7g(k7w)]7 (k75(k7w)) - _T Q(k7w)7 (k7H(k7w)) :07 (16)
iwo(k,w) + ok, w) +i(k, i(k,w)) =0, (17)

Solutions of this system in terms of Fourier-transforms £(k,w) and H(k, w) are defined by:
. i (@2 =itk w) - (K, 2k, w)k)
Ek,w) = i— - : - . : (18)
5 (w—iy)(w? — k2 — iwr)

7:[(k,w) _ —Z@ . [k7 L(k7w)] (19)

ep (w? —2k2 —dwy)

4. One-dimensional heat radiation transfer

We calculate now the flux density of thermal radiation on the basis of the obtained formulas. We
restrict our study by one-dimensional radiative heat transfer. It is not in contradiction with the fact that
thermal electromagnetic field should has three directions of electromagnetic waves propagation in the
sample. The restriction pointed out is associated, firstly, with the fact that, in multidimensional case,
there is a great variety of supplement conditions of heat transfer which one should take into account.
They are sequence, firstly, of strong dependence on the medium sample geometry, and, secondly, due to
necessity of a much more complicated analysis connected with the origin of generalized functions con-
tain a strong singularity. In one-dimensional case, the function «(x,t) depends only on one coordinate
z, u(x,t) = u(z,t) and, accordingly, we suppose that the field @(z,t) depends on this coordinate only.
Then, the wave vector k has only one nonzero component k£ and it is directed along the z-axis. In ac-
cordance with this fact, the Fourier decompositions (7) are turned out from three-dimensional forms to
one-dimensional ones. For the calculation of flux density S(x,t) that depends only from one coordinate
z and it is directed along the z-axis, we use the formulas obtained in the previous section, taking into
account the above described changes. Substituting Eq.(18) and Eq.(19), firstly, into Eq.(13), further, into
Eq.(7) and, finally, into Eq.(2), we find:

S(z,t) = /Q(w —y1,t— s1;2 —ya,t — s9) K(y1 — ya; 81 — s2)ulys, s1)u(ya, s2)dy1dyadsidss,  (20)
Rél
Q(y1.815y2,82) =
47c?

e2u

{id(y1, 1)V (y2, 82) + V{(y1,81)V (42, s2) — i W (y1, 51)V (92, 82)}, (21)

1
K(z—yit =) = 5 Kulz — yit = 5)

where the functions J(z,t), V(z,t), W(z,t) are "thermal radiation propagators" which are defined by
integral representations and they are some generalized functions

1 exp(ikz + iwt) ) s
= dkdw = i6(x)O(t)e™ 22
Hot) = oy | PR o — ()0t ™, (22)
R2
1 exp(ikx + iwt)
Viz,t) = dkd 23
(2,6) (27)2 /w2 — 2k2? — qwry s (28)
R2
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Wi t) — — / oxplikztiwt) (24)
(277)2]R2 (w— i) (w? — 2k — iwy)

The functions V(z,t) and W/{(x,t) are not calculated strictly. We have evaluated their
asymptotical views according to the parameter ~L/¢ where L is the characteristic spatial
size of thermal uniformity, taking into account that the light velocity ¢ in semitranspar-
ent medium is very large. It is important that there are the relations V*(z,t) = V(x,1),
W*(z,t) = —W(x,t) for them. Calculate integrals in each formulas (23), (24) defined these func-
tions. Firstly, we do it integrating over w on the basis of residuals in the poles w = iy, w = iv/2 + w(k),
w(k) = (k*@ — (v/2)*)'/? which are in the upper half-plane, we obtain

Via,t) — 28 o /k sin(w(k)t)
R
or, with the account of the above mentioned neglect by terms being small on the parameter vL/¢, we
have
o(t)

V(:E,t) - 4z

e 7?2 (sgn(x +et) —sgn(z — Et)) :
It gives
V(wt) = =3V(at) - % e (et + 3 — b)) -
5
V(1) = _y L (5(90 tat) - o(a — at)) .

C

Further, we find also by the same way

W (2, t) — ; o) a(a) - %e*w ? 6+ et) 4 6w —et) — - (sanle + et) —san(e —en)) |} (26)

C
For the calculation of the energy flux density S(z,t), we use the transition to the limit of very short
correlation lengths of induced currents, K(z,t) — K(0)d(x)d(t), that is substantiated by the physical
circumstance that, in dielectrics, one may use representation about such stochastic currents only which
show itself at interatomic distances and during temporal intervals with average value order correspond-
ing to thermal vibrations. It is important to do such a transition after the fulfilling of all integrations
in Eq.(20) on the basis of d-functions properties. It is necessary in order to do the regularization of a
product of generalized functions with coincided singularities.

Substitution the expressions (25), (26) into Eq.(21) and, further, into Eq.(20) leads us to the following
formula of the energy flux density after calculation of all integrals and transition to the limit of short
correlation lengths
- 3mcK(0)

d _
S,t) = v / e eyt — o — yl/e)dy,  v= e (27)
R

According to supposition mentioned in third section, u(z,t) depends on coordinates and time through
the functional dependence on the temperature distribution w(z,t) = w(T(x,t)). At this, v?(z,) has the
physical sense of the energy density of thermal photon gas at the temperature T'(z,t) in the space point
x and at the time moment ¢. This value is calculated on the basis of statistical representations of the
photon energy fiw average value with the frequency w using the distribution function f(hw/xT (z,t)) (k
is the Boltzman constant). Namely, we set

u?(z,t) = h/wgf(hw/ﬁT(x,t))dw

where, in particular, one may put the Plank distribution function as the function
f(hw/cT (2, 1)).
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5. Conclusion

After the neglect of the time-lag in the formula (27), the obtained expression of energy flux density
coincides to within designations with the expression of this value which is obtained from the standard
theory of the radiative transfer theory (see, [1-3])

Sz, t) = I/i / e Mv==lley2 (y 1) dy .
dx
R
Such a neglect is substantial because of the time-lag is extremely small in comparison with the charac-
teristic time corresponding to heat conductivity that occurs at distances of the thermal inhomogeneity
order (it has the order of the real sample size).

One may say that despite to the applied value of classical radiation transfer theory, at present time,
there is not anything consequential theoretic microscopic approach to the study of thermal radiation
transfer in condensed media. Such an approach should be based on statistical physics representations.
As it is mentioned above in the introduction, Rytov’s works are the pioneer ones along this scientific
direction. It has set the question about the development of such a microscopic theory. An attempt has
been undertaken in works of an author of proposed article where thermal electromagnetic field has been
introduced by explicit way into theoretical model construction. But, the model proposed in mentioned
works possesses two essential defects from theoretical viewpoint. Firstly, the damping of thermal fluctua-
tions being necessary for the stabilization of thermal electromagnetic field spreading has been introduced
in it by an artificial way. Secondly, the separation of the slow process of temperature distribution change
form the fast process of passing to a stationary regime of electromagnetic field is not fulfilled by explicit
way in the model. At present work, it is formulated the stochastic model without using of the suppo-
sition about electrical susceptibility fluctuations that permits to introduce the damping on the basis of
fluctuation-dissipation theorem. Besides, we do not use the additional averaging on temporal period that
is very large in comparison with the stabilization time connected with thermal irradiation spreading in
the media. At this point of view, the model construction and its verification which have been fulfilled in
the work, presents an achievement of the radiative heat transfer theory along with the model studied in
[5-7]. It is taken place because our theory clarifies what approximations are necessary in order one may
use the traditional theory of radiative heat transfer, and, besides, it connects macroscopic characteris-
tics of radiative heat transfer (the optical length) with statistical characteristics of thermal microcurrent
fluctuations. It is important for theory development in the future.
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