EQUATIONS OF NONISOTHERMAL FILTRATION
IN FAST PROCESSES IN ELASTIC POROUS MEDIA
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The problem of the nonisothermal joint motion of an elastic porous body and the fluid filling the pores
is considered for the case where the duration of the physical process is fractions of a second. A rigor-
ous derivation of averaged equations (equations not containing fast oscillating coefficients) based on
the Nguetseng two-scale convergence method is proposed. For various combinations of physical pa-
rameters of the problem, these equations include anisotropic nonisothermal Stokes equations for the
velocity of the fluid component and the equations of nonisothermal acoustics for the displacements of
the solid component or anisotropic nonisothermal Stokes equations for a single-velocity continuum.
Key words: nonisothermal Stokes and Lamé equations, hydraulic fracture, two-scale convergence,

averaging of periodic structures.

INTRODUCTION

In the present work, we propose a model for fast nonisothermal processes in an elastic deformable medium
perforated by a system of channels and pores (elastic porous media) filled with a liquid or gas. The solid component
of such media is called the soil skeleton, and the domain occupied by the fluid is called the pore space.

In the dimensionless (unprimed) variables

L

T Uy

0

z' = Lz, t = rt, w' = Lw, o =9,

?

the differential equations of the model for small deviations of the dimensionless displacements w and small deviations
of the dimensionless temperature 6 in the domain Q € R® at ¢ > 0 are written as

d?w . B
aTﬁW =div P + pF; (1)
¢ efd' (a, Vo) —a 0 (divw) + ¥; (2)
arlp 5 = div (4. Qo 5 (divew ;
pr+ xapdivw =0, (3)

where the stress tensor of the continuous medium
P=xP/+(1-x)P°
coincides with the elastic stress tensor

P’ = o) D(z,w)+ (o, divew — ap.0)1



in the solid skeleton (I is a spherical tensor) and with the viscous stress tensor

ow
P/ =a,D (957 E) + (—py — oI

in the pore space,

D(z,u) = (1/2)(Vu + (Vu)"),
p:pr+(1_5<)pS7 Ep:XCpf“f’(l_X)cpw

Qe = Xef + (1 = X)0ses ag = Xags + (1 — X)ogs,
pr and p, are the average densities of the fluid and the solid skeleton, and ¢, and cps are the heat capacity coefficient
for the fluid and the solid skeleton. The characteristic function x(x) of the pore spaces Q; C € is considered known.
A derivation of Egs. (1)—(3) and a description of all dimensionless constants (all of them are strictly positive)
is contained in [1].
The problem is closed by the homogeneous initial and boundary conditions:

ow
=0, — 0 =0 Q; 4
w t=0 T Ot =0 ’ t=0 ’ Tl (4)
w=20, 6=0, reS=0Q, t>0. (5)

The mathematical model described by Egs. (1)—(3) contains the natural small parameter ¢, which is the
ratio of the average pore size [ to the characteristic dimension L of the domain considered:

e=1/L.

Therefore, it is justified to determine the limiting regimes in the exact model as the small parameter tends to zero.
This approximation considerably simplifies the initial problem, retaining all its basic properties. However, even
in the presence of the small parameter, the problem remains difficult to solve and requires additional simplifying
assumptions. From a geometrical point of view, as such a simplification one can use the assumption of periodicity
of the pore space.

AssUMPTION 1. Let the domain € be a periodic repetition of an elementary cell Y¢ = ¢Y, where ¥ =
(0,1) x (0,1) x (0,1); 1/ is an integer such that € always contains an integer number of elementary cells Y¢. We
assume that Y} is the solid part of the cell Y, its fluid part Y; is an open complement of Y; in Y, and the boundary
v = 8Y; N JY, between the fluid and solid components is a Lipschitzian surface.

The pore space Q; is a periodic repetition of an elementary cell €Y}, the solid skeleton € is a periodic
repetition of an elementary cell £Ys, and the Lipschitzian boundary I'* = Q% N 89? is a periodic repetition of the
boundary v in Q.

The solid skeleton € and the pore space Q; are connected sets, and the section of the domain Q; by an
arbitrary plane {z; = const, 0 < z; < 1,7 =1, 2,3} is an open (in plane topology) set. In view of these assumptions,
we have

x(®) =x"(2) = x(z/2),  p=p(x)=x(2)p; + (1 = x"(2))ps,
& = p(®) = X (@)epy + (1 = X (2))eps,
p=r(®) =x"(@)ps + (1= x"(2))ps,
. = o (®) = X (@)asey + (1 = X (@) ),

ag = ag(®) = x"(x)ass + (1 = x"(2))ass,

where x(y) is a characteristic function of Y; in Y which defines the pore space. In the model considered, the
function x(y) is considered specified.

Let the dimensionless parameters given below depend on the small parameter of the problem ¢ and have
finite or infinite limits
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where p is the viscosity of the liquid (gas), A is the Lamé constant, 7 is the characteristic time of the process, pq is
the density of water, and g is the acceleration due to gravity.
If 75 = 00, the renormalization of the displacements and temperature

w — a;w, 0 — a6
reduces the problem to a similar problem, in which
2uT 2A72
a“:L2p07 a,\:LZ—pO.
We note that the case 7y = oo occurs, for example, in descriptions of fast processes, such as hydraulic fracture

of an oil bed, in which the duration of the process is a few fractions of a second.
In the case of isothermal motion, the most complete results were obtained in [2, 3]. Nonisothermal motion

ar =1,

was considered in [4] under the constraints 7 < 0o, pg < 00, and Ay ! < o0. In the present paper, which is a
continuation of studies [2—4], we consider the case not studied earlier Ay = 0, in particular, the version

T0 = 1, 0 < pp < o0, Ao =0.

It is shown that the averaged equations of the accurate model (1)—(5) is the anisotropic system of nonisother-
mal Stokes equations for the fluid component, which is related to the equations of acoustics for the solid component
(A1 < 00), or the anisotropic system of nonisothermal Stokes equations for the single-velocity continuum (A = 00).

Obviously, in the solution of real physical problems, the presence of any limiting transitions is not assumed
and there are only concrete physical constants (density of the medium, fluid viscosity, elastic constants of the solid
skeleton, etc.) and two variables: the characteristic dimension of the domain considered L and the characteristic
time of the physical process 7. By changing these variables in the region of applicability of the mathematical model,
it is possible to determine the behavior of the dimensionless complexes o, -, ax, ... which will allow one to
choose a particular regime in the accurate model (1)—(5).

All necessary auxiliary statements and notation are given in [2].

1. FORMULATION OF THE MAIN RESULTS
As a rule, Egs. (1) and (2) are considered within the framework of distribution theory. These equations are

supplemented by the boundary conditions
[w] = 0, [P-n] =0, xoel™, >0 (1.1)

[f] =0, [¢2, VO -n] =0, xo ™, t2>0 (1.2)
on the boundary I'*, where n is the unit normal vector to the boundary;

lel(o) = ¢(s)(@o) — (o),

psy(®o) = lim p(x), pplxo) = lim ().

x—xo T—xT0

x QL o)

Condition (1.1) follows from the definition of the class of desired solutions — solutions (temperature ¢ and dis-
placements w) having the minimal continuity properties. The first condition in (1.2) is a corollary of the law of



conservation of momentum at strong (contact) fractures, the second condition is a corollary of the energy conser-
vation law.
There are various forms of Egs. (1) and (2) and boundary conditions (1.1) and (1.2) which are equivalent in
terms of distribution theory. In the present paper, it is reasonable to write them in the form of integral identities.
DEerINITION 1. The functions (w®, 957]9?7]9?) are called a generalized solution of problem (1)—(4) if they
satisfy the regularity conditions

Vw*, V6°, p5, p; € L*(Qr)
in the domain Qp = Q x (0,77), boundary conditions (4), the equations
1 s £ g =
— = " diva® + X5 (1.3)
ap m

1 1—x°*
— = (1= ) dive — X
an —m

5 (1.4)
almost everywhere in the domain Qr, the integral identity
a? 0
/(pEaTwE . 8—1;0 —x"a,D(z,w): D(gg7 a—('to) —p°F -
Qrp
[0 = X )arD(a, w") = (05 + 95+ 050°)] : D)) dodt =0 (1.5)
for all smooth vector functions ¢ = ¢(a,¢) such that

I

90(:B7t):07 $€S7 t>07 (P($7T):E($7T):O7 58697
and the integral identity
0
/((c;aTOE + b div w®) a_f QSN VE \Ifg) de dt =0 (1.6)

Qrp
for all smooth functions, £ = (x,t) such that
e, t)=0, eSS, t>0, &, T)=0, xel.

We introduce a new unknown function pf, which, by analogy with the function p%, will be called the pressure in the
solid skeleton. Equation (1.4) will be called the continuity equation for the solid component. The normalizing term

55:/X5divw5dx at  px + 1m0 = o0, B5=0 at pe+n <

Q
/p?dx:/pidx:O (1.7)

Q Q

is chosen so that the condition

is satisfied for p, + ny = oo. This increase in the number of unknown functions, first, allows an easy estimation
of the pressure even if p, = co (incompressible fluid phase) or 7y = co (incompressible solid phase), and second,
simplifies the form of the averaged equations.

In (1.5), the notation A : B denotes the convolution of two tensors of the second rank in both indices:

3
A:B~= tI'(B* . A) = Z AUBJ%
i,j=1
Below, we use the following assumption.
ASSUMPTION 2. Let: 1) ¥,0¥/dt, |F|, |0F/dt] € L*(Q7); 2) the nondimensional parameters satisfy the
constraints

Py Lo b 1 Inpal, Bog, Bos, | In sy, | In ses| < o0, T =1, Xo =0.



Everywhere below, the parameters of the model can take all values admitted by the conditions of the
theorems. For example, if p, ' = 0 (incompressible fluid) or 7y} = 0 (incompressible solid skeleton), the terms
containing these quantities vanish in all equations.

We also note that the cases p, = 0 and 79 = 0 are not considered in the present paper since they are of no
interest from both mathematical and physical points of view.

The main results of the present work are the following theorems.

Theorem 1. For all £ > 0 in an arbitrary time interval [0,T], problem (1)~(5) has a unique generalized
solution and

ow* owe
£ _ £ < . .
o (o], o ev 2o, s valo vl Jzes o
max (10Ol + IV (Oll2a) < Co (1.9)
OISH%XT <|||Pf| + |PS|||2,Q) < Cy, (1.10)

where the constant Cy does not depend on the small parameter €.

Theorem 2. The functions Ow®/dt admit the continuation of v® from the domain Q3 x (0,T) to the
domain Qr, so that the sequence {v°} converges to the function v strongly in the space L*(Qr) and weakly in the
space LQ((O T); W(RQ)). Similarly, the sequence {6°} converges to the function 0 strongly in L*(Qr) and weakly in
L2((0,T); W(Q)). At the same time, the sequences {w®}, {(1 — x*)w*}, w3}, and {pS} converge to the functions
w, w*, py, and ps, respectively, weakly in L*(Q7).

L If M = o0, then 0w®/0t = (1 — m)v = (1 — m)ow/dt and the weak and strong limits py, ps, 8, and v
satisfy the following initial-boundary-value problem in Qp:

ov
; V(ps +ps + fob) — pF

e
¢
= div (qugz D(z,v) + Blp, + B{0 + B} dlvv+/B (t —7)dive(z, 1) ClT) (1.11)
0
1 apf

T + !l D(z,v) + dlps + al0

¢
+ (af +m) dive +af (f)a +/a2(t—7)dlvv(a: T)dr =0,
0

1 9py 1 aps
Py Ot 0 En
. 00 [oy Opy  Bos 3195 d

0
- — S NCZEN s 0
“o T e e o T Boo)ad +af)( 5 ), = div (B’ V6) + ¥, (1.12)

+ dive = 0;

Here m = /Xdy is the porosity, p = mpy + (1 — m)ps, By = mPor + (1 — m)Bos, ép = mepp + (1 — m)cps; the
Y
symmetric strictly positive definite tensor of the fourth rank Ag, the matrices Cg, Bg, Blf, Bgf, and Bzf(t), the
symmetric strictly positive definite matriz BY, and the scalar quantities ag, a{, ag, az{, and ag () are defined below.
The differential equations (1.11) and (1.12) are closed by the homogeneous initial and boundary conditions

v(x,0)=0,  0(x,0) =ps(z,0) =ps(z,0) =0, =z,

(1.13)
v(x,t) =0, f(x,t) =0, xeS, t>0.



IL. If M1 < o0, then, in the domain Qr, the weak and strong limits w’, py, ps, 0, and v satisfy the initial-
boundary-value problem which includes the anisotropic nonisothermal system of Stokes equations

v Fw? N
- s s 0) — pF
Py o+ ps =+ Vips + ps o+ o) —p

i
— div (MoAg . D(z,v) + Blp, + Bl 1+ Bl divw +/B2f(t — ) dive(z,7) d7)7
0

— =Lyl D) +alp, +alo

t

+ (af +m) dive +af (f)a +/a§(t —7)dive(z, 7)dr =0,

0
1 9py 1 Ops .
— =4 — d =0
Py Ot m Ot tdive ’
. 00 Boy Opr  Pos Ops Foof <39> . 0
—_ == — Bos — ) =div(B"-Va)+ V¥
p oy P Ol o ot + (Bog — Bos)(az +ay) ot/ o iv ( Vo) +
for the velocity, pressure, and temperature in the fluid component, which is linked to the continuity equation
1 dpy 1 Ops . ow?® .
— = 4 — d d =0
> ot P o + div ey + mdivo
by the relation
ow?® /
= (1—m(x,1) +/Bf(t — )3 (e, 7) dr,
0
P (1.14)
Z(xﬂf) - _1 — mVpS(:mt) - 505v‘9 + pSF(x7t) — Ps E(:B?t)
in the case Ay > 0 or by the momentum conservation law
P*w? . Ov s 1
ps —g = s B3 o+ (L —=m)I = Bz)<— T, VPs = Bos VO + PsF) (1.15)

in the case Ay = 0 for the displacements of the solid component. The problem is closed by the boundary and initial
conditions (1.13) for the averaged temperatures of the entire medium and the velocity v of the fluid component and
the homogeneous initial conditions and the edge condition

w’(x,t) -n(x) =0, xz,t)es, t>0 (1.16)

for the displacements w® of the solid component. In Egs. (1.14)~(1.16), n(x) s the unil normal to the boundary S
at the point © € S; the matrices B5(t) are defined below.

2. PROOF OF THEOREM 1
To derive estimates (1.8) and (1.9),we consider the integral identity

iilee [ () () Yo von [ -x0D(s 50) Do )
Q Q

+ap/xg<div a;zg)zderan/(l—Xg)(div a;zg)zdx} +/ai

Q Q Q

£

2
dx

o6
v ot




. O?w* O?w* OF 0’w*
+a“/XD<x7 a1 )D<x a1 )dx*/ o o
Q Q

9B (ay .. O%wE ay, oy . O%wf
+ o (G [ S de 1220 - v S ae), 0
Q Q

which is obtained after differentiation of the equations for w*® and 6° with respect to time, multiplication of the
first equation by 8%w*®/dt? and the second equation by 99°/dt, their integration by parts, and summation.
If po + 10 < 0 (37 =0), identity (2.1) leads to the estimate

ow* . Ow*
O<t<T (H ot? t HZQ at (t)HZQE Vo Hdw at (t)HZQE
ow* 06° o0°¢ we
v | div o], o 150, ) Vg vl ., = <o 22
+ apH v at( 2,05 ) ) Vor Xv8t2 20 = 0 (2.2)

where Cjy does not depend on ¢. Estimates (1.8) and (1.9) follow from (2.2), and estimate (1.10) for the pressures
p; and pf follows from the continuity equations (1.3) and (1.4) and estimates (2.2).
Let p, + no = 00. Then, estimates (1.8) and (1.9) follow from identity (2.1) when using the inequalities

%(/ o )Zg/xﬁ(dﬁ;f)zd%

Q Q

P [ ) [ (a0

Q Q

Estimate (1.10) for the sum of the pressures p + p; follows from the basic integral identity (1.5) and
estimates (1.8) and (1.9) as an estimate of the corresponding functional in W (€2). Indeed, identity (1.5) written as

£ £ M £ azwg £ awg £ £ £ NE
/(pf +p5)divep de = / [p (aTW_F) P+ (X ozuD<957 7) + (1= x")onD(x,w*) — gl I) : D(:It?’l,b)} dx
Q Q
and estimates (1.8) and (1.9) lead to

| [ 7+ 951 divp o] < Co o 1Oy (2)

Choosing 1) so as to satisfy the condition Py +pi=q= div 1), we obtain the required estimate for the sum of the
pressures p5 + p;. This choice is possible (see [5]) if we set

"7[) - VSD + 77[)07
where
Ap=yq, =z, p=0, xecd; (2.4)
divipg =0, x e, Po=—Vyp, xed. (2.5)

Indeed, estimate (2.3) leads to

2
[ do < 0o max 19Oy
Q

Continuing the solution of problem (2.4) in an odd manner through the boundary of the domain €, we obtain

172
peWH@),  max [Ve(t)lwy < max la®lo.

We seek the solution g of problem (2.5) as a solution of the Stokes equations

Apg + Vp =0, divpg =0, z el



that satisfies the inhomogeneous boundary-value condition
Py = -V, x € 0.

The latter problem has a unique solution such that

max [ o(®)lwye) < max IVe(©lw e

/div(Vap)de/Aapdx:/qu:O.
Q

Q Q

if and only if

It is easy to see that this condition follows from conditions (1.7). Thus, taking into account all estimates,
we obtain the required estimate but only for the sum P} +p5 Because the product of these functions is equal to
zero, this is sufficient to estimate each term.

Estimates (1.8)—(1.10) guarantee the existence and uniqueness of the generalized solution of problem (1)—(4).
To prove this, it is sufficient to employ the Galerkin method, using the space Wzl(ﬂ) as the basis space, and any
basis orthonormalized in the scalar product of the space L?(Q) as the basis.

3. PROOF OF THEOREM 2

3.1. Weak and Two-Scale Limits of Sequences of Displacements and Pressures. By virtue of
theorem 1, the sequences {p%}, {pi}, and {w"} are uniformly (in the parameter ) bounded in L?(Q7). Hence,
there exists a subsequence of {z > 0} and functions py, ps, and w such that

Py =P Py = Ds w —w
weakly in L?(Qr) as € \, 0.
Similarly, because the sequence {7} in L? ((O7 ), Wzl(ﬂ)) is bounded, there exist a subsequence of {¢ > 0}

and a function 0 € L2((0,T); Wi(Q)) such that 0° — @ weakly in L2((0,T); Wi(€)) as £ \, 0.
Redenoting, if necessary, the indices, we assume that the sequences converge by themselves. We also note
that

(1 =x")aaD(z,w") — 0

strongly in L?(Q7) and that the sequence {div w®} converges weakly to the function divw in L?>(Qr) as £\ 0.
Moreover, by virtue of the continuation lemma (see [2,6,°7]), there exist functions

v € L2((0,T); W3 (),
such that v° = dw”/dt in Qf x (0,71), v = 0 on the part 5% of the boundary S and

ov®
ot

< Co,

H ov®
t 2,Qr7

0

n Hv
2.0

£ £ <
max (v (Ol + [V Oll2a) < Co

(the constant Cjy does not depend on the small parameter ¢).

Lemma 1. There exist a subsequence of {¢ > 0} and a function v € L®((0,T); Wi(Q)) such that v*( - t) —
v( 1) weakly in Wi (Q) as e \ 0 for allt € [0,T].

The proof Lemma 1 is rather standard.

From the Nguetseng theorem (see [2, 8]), it follows that there exist functions Py(x,t,y), Ps(x, 1, y), ©(2,t, y),
Wz, t,y), and V(x,t,y) which are one-periodic in the variable y and are such that the sequences {p;}7 {2},
{Ve°}, {w"}, and {Vv"} two-scale converge to the functions Py(x,¢,y), Ps(x,t,y), VO+V,0(x,t,y), W(x,t,y),
and Vv 4+ V,V(x,t,y), respectively.



3.2. Microscopic and Macroscopic Equations I. The following lemmas are valid.
Lemma 2. For allx € Q and y € Y, the weak two-scale limits of the sequences {p;}, s}, {we}, and {v°}
satisfy the relations

_ o, lTx P,
Pe=psy— = Pr=xPp (3.1)
1 dp . . op
o 8—tf +mdive + (divy V)y, = s (3.2)
1 0P . , x 9B
o 8—tf + x(dive+div, V) = pav (3.3)
1 1 .
—ps+ —ps +divw =0; (34)
Px 1o
w(ax,t) n(x) =0, xS, (3.5)
div, W = 0; (3.6)
ow oW
—_ = 1—x)— 3.7

where B/0t = {(divy, V)v,)q if p« + 1m0 = 00 and B = 0 if p. +mo < oo; n(x) is the unit normal vector to the
surface S at the point x € S.

The proof of the lemma is similar to the proof of the corresponding lemma in [2].

Corollary. Let p, + 19 = co. Then, the functions p; and p;, satisfy the equalities

{prra= ({ps)a=0.

Lemma 3. For all (x,t) € Qp andy € Y, the relation
) 1—
div, [nox (D(y. V) + D(@,v)) = (xPy + Ao(y)0 + 1=

where Bo(y) = Borx(y) + Pos(1 = x(y)), is valid.
Proof. In the integral identity (1.5), substituting a test function of the form ¢* = sp(x,t, x/c), where

@(x,t,y) is an arbitrary function which is one-periodic in y and vanishes on the boundary S and passing to the
limit as £ \, 0, we obtain the required microscopic equation (3.8) on the cell Y.

Lemma 4. Let p = mpy + (1 —m)ps and Bo = mPor + (1 — m)fos. Then, the functions w® = (Wy,, v,
D, Ps in the domain Qr satisfy the system of macroscopic equations

ov ws . A
pwq%+m7@~wfzmﬂme@m%HD@WWw%%m+m+%@ﬂ (3.9)

2pJI}:O7 (3.8)

and the homogeneous initial conditions
a 8
w’(x,0) =0, (pfvarps a—u;)(a:70) =0, x €.

Proof. Equations (3.9) and the corresponding initial conditions are obtained by passing to the limit in
identity (1.5) if, as test functions, one uses functions independent of the fast variable y = x/«.

3.3. Microscopic and Macroscopic Equations II. The following lemmas are valid.

Lemma 5. If Ay = 00, the weak limits of the sequences {v*} and {Ow®/dl} coincide:

w1 ow?
A 1-m at

Proof. Let ¥(x,t, y) be an arbitrary smooth scalar function which is periodic in the variable y. The
sequence {07}, where

Owe
ol = / VAR S, W (@, ) de, w = (),
J
Q




is uniformly bounded in the parameter . Hence,

Ow; e
e 7z, (x, )V(x,t,x/c)dx = — o s 0

as € \, 0, which is equivalent to the equality

[ [ Wit ws @ tyydrdy =0, W= Wi wa
Yj
QY

or Wz, t,y) =w(x,t). By virtue of the last relation and the equality
ow*
£ g _ -0
X (v ot )

the limit dw/dt of the sequences {dw*/dt} coincides with the limit v of the sequence {v®}.
Lemma 6. Let Ay < o0o. Then, the weak two-scale limits ps and W in the domain Yy satisfy the microscopic

equations
’Pw
ow
— = 3.11
En v, yecy ( )
in the case of Ay > 0 and the microscopic equations
’Pw
ow
(W—v)wz:O? yeny (3.13)
in the case Ay = 0.
In (3.10), (3.12), and (3.13),
1
zZ=—7FT— vps - ﬁOsve + psF
1—m

and n is the unit normal to the boundary ~y.
FEquations (3.10) and (3.12) are supplemented by the homogeneous initial conditions

ow

Proof. As e\ 0, the differential equations (3.10) and (3.12) and the corresponding initial conditions follow
from the integral identity (1.5) with testing functions of the form ¥ = @(xe~!)h(z,t), where ¢ is a solenoidal finite
function Y, in the domain.

The boundary-value condition (3.11) is a consequence of the two-scale convergence of the sequence
{/oax Vw?} to the function /A V,W (x,t,y). By virtue of this convergence, the function V, W (x,t,y) is in-
tegrable in L?(Y'). The boundary-value condition (3.13) follows from Egs. (3.4) and (3.5).

Lemma 7. For all (z,t) € Qp and y € Y, the strong two-scale limits 0 and © satisfy the microscopic
equation

div, [50(y) (V8 + V,0)] = 0, (3.14)

where 30(y) = x(y)xof + (1 — x(y))»0s-

The proof of the lemma is similar to the proof of Lemma 3.

Lemma 8. For all (x,t) € Qp, the weak and strong limits of 8, py, and p, satisfy the macroscopic heat-
conduction equation

. 00 Boy Opy _ Pos Ops B . i
Tty TR 7 + (s = fos) 5= = div (50 V0 + (5 V,O)y) + ¥, (3.15)

where oo = (30)y and ¢, = mepp + (1 — m)eps.



The proof of Lemma 8 is similar to the proof of Lemma 4 if, previously, the term of div w® in identity (1.6)
is expressed in terms of the pressure, using the continuity equations (1.3) and (1.4).

3.4. Averaged Equations I. We derive averaged equations for the fluid component.

Lemma 9. If M = oo, then Ow/0t = v and the strong and weak limits v, py, and ps in the domain Qp
satisfy the system of averaged differential equations

ov

P5r +V(ps +ps + Hob) — pF

¢
= div (qug : D(z,v) + Blp, + B{0 + B} divv +/B (t —7)dive(z, 1) ClT) (3.16)
0

— =Lyl D) +alp, +alo

i
+ (af + m) divv + af (0)q +/a2 (t — 7)divo(z,7) dr = 0; (3.17)
0
1 9py 1 aps B
ot Tmor +dive =0, (3.18)

where the symmetric and strictly positive definite tensor of the fourth rank Ag, the matrices Cof, Bg, Blf, Bgf, and
Bzf (t), and the scalar quantities ag, a{, ag, aﬁ, and ag (t) are defined below.
The differential equations (3.16) are supplemented by the homogeneous initial and boundary conditions

v(x,0)=0, xzecQ, v(z,t) =0, =& t>0. (3.19)

Proof. First of all, we note that, by virtue of Lemma 5, v = dw/dt.
The averaged equations (3.16) are obtained by substitution of the expressions

1o{D(y, V))y, = Al : D(z,v) + B{p, + B0

+B3fdivv+/Bzf(t—T)divv(a:m) dr + A(t)

into the macroscopic equations (3.9). In turn, the last formula is the result of solution of Eqs. (3.6) and (3.8) on
the elementary cell Y;. Indeed, if p, +no < oo, then = 0. Then, assuming that

3
V=" V(D + VOry)p, + VI 9+/V<2 (y,t —7)divo(z, 7)dr,
t,j=1

t
Pp = ZPJ )Dij + Py )ps+P1<y>0+/P<2><y7t—T>divv<:m>dﬂ
1,5=1 0

where

1 /v, v,
Djj(z,t) = —( “(x,t (@t )
3(337 ) 2 axj (237 )+ 8:171 (237 ) ’
we obtain the following periodic boundary-value problems in the domain Y:

div, [xD(y, Vi) — xPUT 4y Ji9] =0,  xdiv, V@D =0

1 —
div, [poxD(y, V@) — (XP<0> T X )I} =0,  xdiv, V@ =0, (3.20)
—m



divy [roxD(y, V) = (Bo(y) + xPI] =0,  xdiv, VIV =0;
divy [poxD(y, V?) — x PO = 0;

1 oP®

1
div, V@ =0 — P (y.0)=— . 3.21
T + x divy, ; o (y,0) x(y) (3.21)

If p, = o0, then 5 £ 0. Then, assuming that

3
V= VW (y)Dy + VO (y)ps + VI (y)(0 — (0)a) + VI (y) dive + VI (y)(h)q,

ig=1

3
Py =Y P(y)Dy + P'(y)ps + P1(y)(y) (0 — (O)a) + PP (y) dive + PD(y)(0)q,

i,j=1
we obtain the following boundary-value problems for determining the functions {V () P®3)} and {V4) p&1:
div, [oxD(y, V) = xPOI =0, x(div, V& 1) =0,

3.92
divy [oxD(y, V) — (xPW + Bo(y))I] =0, xdiv, VY = (y/m){x div, VV)y. (322

Finally, if p. < 00 and 79 = o0, then

3
V= VYD, + VO yp, + VI (y)(0 - 0)a)

i,j=1

t
+ / VO(y,t — 1) dive(z, )dr + VO () (B)a,
0

3
Pp =" P(y)Dig + P°(y)ps + P (y)(y)(0 — (0)a)

i,j=1

¢
+ /P(Q)(y7 t —7)dive(e, 7)dr + P (y)(0)q.
0

Assumptions on the geometry of the elementary fluid cell Y} guarantee the existence of a unique (to within
a constant vector) solution of problems (3.20)—(3.22). To eliminate arbitrariness, we require that the following
equalities be satisfied:

(V)y, = (v = (PW)y, =0,  i,j=1,23 £k=0,1,234.

Thus,
3

Al =mJ+Al, A= (D, VD)), ©J9,
i5=1
BZ:BZ7 i=0,1,2, Bgf:O at  py < oo,
B/ =B/, i=0,1,3, B/=0 at p,=o0,
B/ = o(D(y, VD))y,,  i=0,1,2,3.

The symmetry of the tensor Ag is proved in [2].



Equations (3.17) and (3.18) for the pressures follow from Eqgs. (3.2) and (3.4) and the equality
(div, V)y, = C{ : D(x,v) + alps + al6 + af divv
¢

+al(0)q + /ag(t —7)divo(z,7)dr,

0
where
3
Cl = (div, VI9yy i,
ij=1
af =af, i=0,12 al =0, =314 at
5 i B Rt R j*7 3*7 p*+770<007
al =al, i=0,1,3,4, al =0 at p,=oo,
al =al, i=0,1,24, af=0 at p.<oo, =00,

al = (div, V)y,, i=0,1,2,3, &} = (div, V¥ —div, V(D).

3.5. Averaged Equations II. The proof of Theorem 2 is completed by the derivation of averaged equations
for displacements of the solid component.

Let A1 < 00, As above, the limit v of the sequence {v®} satisfies an initial-boundary-value problem similar
to (3.16)—(3.19). The main difference is that the weak limit dw/dt of the sequence {0w*/dt}, generally speaking,
is different from v since the following lemma is valid.

Lemma 10. Let A < oo. Then, the strong and weak limits v, w°, py, and ps of the sequences {v°},
{(1 — xHwe}, {p;}, and {p} in the domain Qr satisfy the system of the differential equations consisting of the
momentum conservation law

ov & w? A R
prm e+ s~ + Vps +ps + fol) — pF

i
— div (MoAg . D(z,v) + Blp, + B{o+ Bl dive + / Bt —)div(z, 1) d7)7 (3.23)
0

the continuity equation (3.17) for the velocity and pressure in the fluid component (Ag, Bg, Blf, Bzf, Bgf are defined
in Lemma 9), the continuity equation

pi* % 771—0 aap; +div a;:;s +mdive =0, (3.24)
the relation
. t
8;‘; (1 —m)o(z, 1) +/Bf(t —7) - E(x,7) dr,
0
v (3.25)
Z(x,t) = z(x,t) — ps E(Cbﬂf)
in the case Ay > 0 or the momentum conservation law in the form
2,08
o B B O (1 - m) - By (3.26)

in the case A\ = 0 for the displacements of the solid component. The problem is supplemented by the initial and

boundary conditions (3.19) for the velocity v of the fluid component and the homogeneous initial conditions and the
boundary condition

w’(x,t) -n(x) =0, (x,t)e s, t>0 (3.27)



for the displacements w® of the solid component. In Egs. (3.23)~(3.27), n(x) is the unil normal to the boundary S
at the point © € S; the matrices B§(t) and B are defined below.
Proof. The boundary condition (3.27) follows from Eq. (3.5), the equality

ow  Ow?
PR TR
and the homogeneous boundary conditions for the velocity of the fluid component v.
This equality and Eq. (3.4) prove Eq. (3.24). Equations (3.23) are derived similarly. We derive averaged
equations of motion for the displacements w?® of the solid component.
1. Let Ay > 0. Then, the solution of the microscopic equations (3.6), (3.10), and (3.11) supplemented by

homogeneous initial conditions is found from the formulas

L 3
W — O/ (v(a:ﬂ') +;Wi(y7t—7) ®e;- z(:m)) dr,

where the functions Wi(y, t) and Ré(y,t) are determined by solving the periodic initial-boundary-value problems

rw AMAW? R = div, W = Y,
psw_ 1 +v *07 1Vy *07 yers, t>07
Wi =0, yey, >0, (3.28)
) OW'?
W'(y,0) =0, yevy,,

7 e,
P Bi(y,0)
e; is the unit vector of the Cartesian coordinate system. Hence,

3

Bi) -3 (50 ),, @ e
i=1

s
1=

We note that, by virtue of the constraints imposed on the geometry of the elementary cell Ys, problem
(3.28) has a unique solution which is only generalized because of the unmatched initial and boundary conditions.
Therefore, at ¢t = 0, the function Bj(¢) is nondifferentiable.

2. Let Ay = 0. Then, to solve system (3.6), (3.12) and (3.13), one first needs to determine the pressure
R(x,t,y) by solving the Neumann problem for the Laplace equation in the domain Y;:

3
R($7t7 y) - ZR’L(y)e’L . 2($7t)7
i=1

where R;(y) is a periodic solution of the problem
AyR; =0, yevY,, VyR; - mn=n-e, yec~.
This problem has a unique (to within an arbitrary constant) solution. Formula (3.26) is the result of averaging of

Eq. (3.12) and the equation
3

B; =Y (VRi(y))v, ® e,
i=1

where the matrix (1 — m)I — B3 is strictly positive definite. Indeed, let for an arbitrary unit vector &,

3
R=>"Ri.
i=1



Then

(B&)E = (¢ — VR) )y, > 0.

Lemma 11. For all (x,t) € Qr, the weak and strong limits 8, py, and p, satisfy the averaged heat-conduction
equation

. 00 [Bor Opr  Pos Ops ooy /00 . 0
— - = - — fos — =div(B°V#)+ U, 3.29
by ol Bor = ek () = div(B'VO) + (3.29)
where the symmetric strictly positive definite matriz BY is defined below.
Proof. The averaged heat-conduction equation (3.29) is the macroscopic heat-conduction equation (3.15)

in which the expression (3 V,0)y is replaced by the expression
(50V,O)y = Bf - V0.

The last formula is the result of solution of the microscopic heat-conduction equation (3.14) in the form

: 09
ONw,t,y) =) O,(y) —(x,1),
(x,t,y) ; (v) 5,-(@:1)
where ©; (i = 1,2, 3) are periodic solutions of the equation div, [5#,(V,©; + e;)] = 0 in the domain Y. In this case,

3
B’ =il +Bfj, Bj=> V,(0)yxe.
i=1
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