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Abstract—We consider a linear system of differential equations that describes the joint motion
of an incompressible elastic porous body and an incompressible fluid filling the pores. The
model is very complicated because the main differential equations contain the derivatives of
expressions with nondifferentiable rapidly oscillating small and large coefficients. On the basis
of Nguetseng’s two-scale convergence method, we derive homogenized equations in a rigorous
way; depending on the geometry of pores, these are either the thermoviscoelasticity equations
(for a connected porous space) or the anisotropic thermoelastic Lamé system.

INTRODUCTION

In this paper we study the problem of joint motion of a nonisothermal elastic body perforated
by a system of pores and channels (called a solid skeleton) and a nonisothermal viscous fluid filling
the cavities (the porous space). We study only the case of a geometrically periodic porous space.
Namely, we consider the domain € = (0,1)? and assume that it is periodically composed of copies
of an elementary cell Y¢ = &Y, where Y = (0,1)3. The number 1/¢ is integer, so that ) contains
an integer number of elementary cells. Let Y; be the “solid phase” of the cell Y, and let the “fluid
phase” Y; be its open complement. We set v = 9Y; N 8Y;. The boundary « is a C'! surface, the
porous space ) is the periodic repetition of the elementary cell €Y}, the solid skeleton € is the
periodic repetition of the elementary cell £Y;, and the boundary I'* = 9 N 905 is the periodic
repetition of the boundary v in €.

In dimensionless variables, the differential equations of the problem for the dimensionless dis-
placement w and the dimensionless temperature ¢ in the domain 2 € R? have the form

L OPw . R
arp W:dlvﬂ‘urp F, (1)
e 0 : & & J .
Arepmy = divy (a5, V,0) — Y5 div, w, (2)
p+apx®div,w =0, (3)
T+ ay(l —x%)div, w =0, (4)

P =x°c,D <£E, %—Y) + (1 = x%)aD(x,w) — (p+ 7 — ag0)L.
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Here and in what follows, we use the notation

D) = 5 (Vou + (Tw)T), v = x(%),

p(x) = xT(pr + (1 =X (x))ps, (%) = X" (X)epr + (1= X7 (%)) s,
o (%) = X" (X)as + (1 = X°(x))ws, (%) = X" (X)agr + (1 — X°(x))tps;

by x(y) we denote the characteristic function of ¥ on Y. This function, which determines the
geometry of the porous space, is assumed to be known in our model.

The derivation of equations (1)—(4) and the description of the dimensionless constants (which
are all strictly positive) are given in [1].

The problem is supplemented by the homogeneous initial and boundary conditions.

In this model, a natural small parameter is the ratio ¢ = [/L of the average pore size [ to the
characteristic size L of the domain under consideration; the dimensionless parameters ¢;, where
i =r7,v,...,depend on the small parameter . We also assume that the following (finite or infinite)
limits exist:

il\{% au(e) = o, il\{% ax(e) = Ao, i{% a-(g) = 7o, il\i% (&) = Pay il\i% (&) = o,
igﬁl} Qses(€) = 205, il\I,I(IJ Qs = 20f, il\I,I(IJ agt(e) = Por, i{% ags(g) = Bos-

Our main purpose in this paper is to find limit regimes (homogenized equations) as the small
parameter tends to zero.
Simpler models for isothermal media were studied in [2-8].

1. STATEMENT OF THE MAIN RESULTS

As usual, equations (1) and (2) are understood in the sense of distribution theory. They include
equations (1) and (2) on each of the domains Qf and €2 and the boundary conditions

[¥] =0, [w] =0, xp €I, t>0, (1.1)

[P-n| =0, a5, V0 - n| =0, xp €1, >0, (1.2)

on the boundary I'¢, where n is the unit normal vector to the boundary and

[¢l(%0) = () (X0) — ) (X0), ) (x0) = Jim o(x), ¢(r)(%0) = lim p(x).

X—XQ X—X0
x€0g xe0f
There exist various equivalent (in the sense of distribution theory) forms of equations (1), (2)
and the boundary conditions (1.1), (1.2). The form most convenient for our purposes is that of
integral identities.
Definition 1. Functions (w®, 6%, p®, 7%) are called a generalized solution of problem (1)—(4),
(1.1), (1.2) if they satisfy the regularity conditions

we, D(x, w®), div, we, p°, 6°, V,.0° € L*(Qr) (1.3)
in the domain Q7 = Q x (0,7T), the boundary conditions
wE=0, 6°=0xeS—=00, t>0, (1.4)
the continuity equations
1

1
a—pg + x° div, w& = _E,YEXE (1.5)
p



and

1. 1
— 1=y )divg w® = ——°(1 — x° 1.6
o H{1 =) dive wh = ——7(1 = x) (1.6)

almost everywhere in the domain Qp, the integral identity

£ £ 82 £ £ £ a
/(anw ’8—15(21)_ F~cp—xaMD(x,w):D<:v,a—(§>
Qp

+{(1 = x%)anD(x, w®) — (p° + 7° — o56°)1} : D(x, cp)) dxdt =0 (1.7)

for all smooth vector functions ¢ = @(x, ) such that ¢@|sq = @7 = %—f ‘t:T = 0, and the integral
identity

/((achﬁE + ag divy wg)% —a, V.0 Vm£> dxdt =0 (1.8)

Qp

for all smooth functions & = £(x,t) such that &|pq = &|e=r = 0.

In (1.7), A : B denotes the convolution of two rank 2 tensors over both indices; i.e., A: B =
tr(B*o A) = S22 .| A;;Bji. The normalizing term 7° = Jo(1 = x%) div, w® dx in (1.5) and (1.6) is

i,j=1
/pgdx /ﬂ'EClXO.

Q Q

chosen so that

In what follows, we assume that the following holds.

Assumption 1. 1. The dimensionless parameters in problem (1)—(4), (1.1), (1.2) satisfy the
restrictions

-1 -1
0< 70f y X0sy MO, )\O < o0, TO:ﬁOfy/BOSyp* 7770 < o0, P« + o = ©0.

2. The functions F, 9F/0t, and 9?F/0t? are bounded in L?(Q7).

The condition p, = oo means that the fluid under consideration is incompressible, and the
condition 1y = oo means that the solid skeleton is incompressible. Throughout the paper, the
model parameters are allowed to take any admissible values. For example, if 7o = 0 or nj L — o,
then the terms containing these quantities vanish in all equations.

The main results of this paper are formulated in Theorems 1 and 2.

Theorem 1. Under the assumptions made above, for any € > 0, there exists a unique general-
ized solution of problem (1)-(4), (1.1), (1.2) on an arbitrary time interval [0, T, and the following
estimates hold:

ow*® P*we ow*®
A A < .
e ||| == (t)‘ + | (t)‘ + | Ve (1) o < Co, (1.9)
£ < .
OréltagT(H 7 ||, + || V.0 ||27Q> < (o, (1.10)
max ([|7°(t) ]|z + [p°(1)]l2.0) < Co, (1.11)

0<t<T

where the constant Cy does not depend on the small parameter ¢.



Theorem 2. The sequences {w} and {0°} converge strongly in L*(Qr) and weakly in
L2((0,T); W4(2)) to functions w and 0, and the sequences {pf} and {n®} converge weakly in
L?(Qr) to functions p and w, respectively. Moreover, the functions w, 0, p, and 7 satisfy the
following initial-boundary value problem in Qp:

_? ~ . : 0
TOpa—;V + V(g +7—fol) — pF =div, <A1 : D(% (’9—‘:) + Ay : D(z, w)

+ /(Ag(t —7) :D(x, w(x, 7)) + B(t — 1) div, w(x, 1) + B(t — 7)0(x, T)) ClT) , (1.12)
0

ip +mdiv, w = — /(C’l(t —7) :D(x,w(x,7)) +a1(t — 7)div, w(x, 7)

o
0
+al(t — )0, T)) dr — a(t)(0)a, (1.13)
%ﬂ' + (1 —m)div, w = — O/(C’g(t —7) :D(r,w(x, 7)) + ax(t — 1) div, w(x, 7)
Fal(t — 7)0(x, T)) dr + a(t)(0)a, (1.14)
ity Gy — S = PR (B — fon) 1 (a()0)n) = diva (B V.0) + 0. (1L15)

The problem is supplemented by the homogeneous initial and boundary conditions for 0 and w.
In (1.12)—(1.15),

p=pmtps(1—m),  Bo=Pform+Bos(l—m), & = cprm+ cps(l—m), m/x(y)dy;
Y

Ay, Ag, and As(t) are rank 4 tensors; B(t), B%(t), BS, C1(t), and Cy(t) are matrices; and ai(t),
az(t), af(t), aS(t), and a(t) are scalars. Erzact expressions for these objects are given below in
formulas (4.17)-(4.24). The matriz BY is strictly positive definite.

For a connected porous space, the symmetric tensor Ay is strictly positive definite. Otherwise
(for a disconnected porous space, when yNAY = &), Ay = 0 and system (1.12) degenerates into a
nonlocal anisotropic system of Lamé equations with a symmetric strictly positive definite tensor As.

2. PRELIMINARIES

The proof of Theorem 2 is based on a systematic application of the two-scale convergence method
proposed by Nguetseng [9], which has been extensively used in homogenization theory (see, e.g.,
the survey [10] and Zhikov’s papers [11-13]).

Definition 2. A sequence {p?} C L3(Q) two-scale converges to a limit ¢ € L?(Qr x Y) if

li\rxr(l) O (x,t)o(x,t,x/c) dx dt = //go(x,t,y)o(x,t,y) dy dx dt (2.1)
Qr Qr Y

for any smooth function ¢ = o(x,t,y) that is 1-periodic in y.



The existence and basic properties of two-scale convergent sequences are stated in the following
theorem [9, 10].

Theorem 3 (Nguetseng’s theorem). 1. Any bounded sequence in L*(Qr) contains a subse-
quence that two-scale converges to some limit ¢ € L*(Qr x Y).

2. Suppose that sequences {¢f} and {eV, ¢} are uniformly bounded in L?(Qg). Then there exist
a function p = p(x,1,y) 1-periodic in y and a subsequence of {¢©°} such that ¢, Vyp € L*(Qp xY)
and ¢° and eVyp° two-scale converge to @ and Vyp, respectively.

3. Suppose that sequences {¢°} and {Vy0°} are uniformly bounded in L?(Qg). Then there exist
functions ¢ € L*(Qr) and ¢ € L*(Qr x Y) and a subsequence of {¢®} such that v is 1-periodic
iny, Vyb € L2(Qq x Y), and ¢° and V@ two-scale converge to ¢ and Vep(x,t) + Vy(x,1,y),
respectively.

Corollary 1. Let o € L*(Y) and 0°(x) := o(x/s). Suppose that a sequence {©°} C L*(Qr)
two-scale converges to a limit p € L*(Qp x Y). Then, the sequence of o%¢® two-scale converges
to op.

Throughout the paper, we use the following notation:

(1) < Y*fyq)d}ﬁ fyX(I)dY7 (I) fy (I)dY7 90>Q :fQQOdX7 and <90>QT -
Jo, pdxadt;

(2) if a and b are vectors, then a @ b is the matrix defined by
(a@b)-c=a(b-c)

for any vector c;

(3) if B and C' are matrices, then B @ C' is a rank 4 tensor such that its convolution with any
matrix A is given by

(BoC): A= B(C: A);

(4) 1¥ is the matrix with a unique nonzero element that equals 1 and is in the intersection of
the ith row and the jth column;

(5) finally,
1
JY = 5(]1” + ) = 5(61' ®ej;+e; e,
where (e, e2,e3) is an orthonormal basis.

3. PROOF OF THEOREM 1

For all £ > 0, we have

£

D*we . Ow
lex W (t)

| g @

ow*®

o0°

T V| ()

2,08

o (Vs

0<t<T

VA

2,08 2,0

2,9)

< Co, (3.1)
2,Qr

v

where Cy does not depend on £. This estimate is obtained by differentiating the equations for
w? and #° with respect to time, multiplying the first equation by 9?w?®/0t? and the second by
0%/ Ot, integrating by parts, and summing. This estimate ensures the existence and uniqueness of
a generalized solution to problem (1)—(4), (1.1), (1.2).

Estimates (1.9) and (1.10) follow from estimates (3.1) and the Poincaré inequality.

2,07



Estimate (1.11) for pressures is derived as an estimate for the corresponding functional from the
integral identity (1.7) and inequalities (1.9) and (1.10) in view of the relation

/(pg(x, t) + m°(x,t)) dx = 0.

Q

Indeed, the integral identity (1.7) implies

/(pg(x, £) 1 7°(x, 1)) dive g dx| < ClIV|lz.0.
Q

Choosing ¢ so that p* + 7 = div, ¢, we obtain an estimate for the sum of pressures p° 4 7°.
Such a choice is always possible (see [14]); it suffices to set

$ = Vo + o, where divy o =0, Ap=p°"+7°, ¢lasa =0, and (Vo4 do)laq = 0.

It remains to note that since the functions p* and 7 are orthogonal, a bound for the sum implies
a bound for each term.

4. PROOF OF THEOREM 2

4.1. Weak and two-scale limits of the sequences of displacements, temperatures,
and pressures. By Theorem 1, the sequences {w*®}, {6°}, {p°}, and {#®} are uniformly bounded
with respect to € in L?(Qr). Therefore, there exist a subsequence of £ > 0 and functions p, 7, w,
and @ such that, as £ \, 0,

£

- =P, T =T weakly in L*(Qr),
w® — w, 0° — 0 strongly in L*(Qr),
Vew® — V,w, V.07 — V,.0 weakly in L2(Qr).

These relations and Nguetseng’s theorem imply the existence of functions P(x,t,y), I[I(x,t,y),
O(x,t,y), and W(x,t,y) that are 1-periodic in y and for which the sequences {p*}, {n°}, {V6°},
and {Vw*®} two-scale converge as ¢ \, 0 to P, I, V.0 + V,0, and V,w + V, W, respectively.

4.2. Micro- and macroscopic equations.

Lemma 4.1. The two-scale limits of the sequences {p}, {n¢}, {VO°}, and {Vwe} satisfy the
following microscopic relations in Yp =Y x (0,7T):

1 . . " _
%H + (1 — x)(divy w + div, W) = a—m (1—x), (4.1)

1
p_P + x (divy w + div, W) = —%X, (4.2)

Vy (P + 11— (Borx + fos(1 — x))0) = divy (xuo (D (w %—Y) + D<y, %—Vt‘[))
L= )(Ble,w) + D, W) ) (13)

divy (xs08(Vel + VyO) + (1 — x)500s(Val + Vy©)) = 0. (4.4)



Lemma 4.2. The weak and strong limits p, w, 0, and w satisfy the following system of macro-
scopic equations in Q.

1
n—7r + (1 —m)divy, w 4 (divy, W)y, =, (4.5)
0
1
p—p + mdiv, w + (divy W)y, = —, (4.6)
Pw ~ ow oW
piad _ 5F — div, D Dy, X
00503 +Vi{g+m—[5ob)—p div (u()(m ( o > +< (y T >>Yf>
+ da((1 = Bl w) + D Wiy, ). (@.7)

90 Bor Op  fos O Oy .
o T A o At s — - ¥ = - ;
oo ot me ot TG div, (20 (mV20 + (V,©)x;)

+ a5 (1 — m)V,0 + <vy@>ys)). (4.8)

In (4.1)—(4.8),
Y= <(<dlvy W>Ys)>Q7 b\: prm + pS(l - m)7
Bo = Borm + fos(1 —m), Cp = Cptm + cps(1 —m).

Proof. To prove (4.1) and (4.2), we multiply equations (1.5) and (1.6) by ¢¥* = ¥(x,t,x/e),
where 1(x,t,y) is an arbitrary function 1-periodic in y, and integrate the result over the domain €.
The required relations are obtained by passing to the limit as £ \ 0.

Equations (4.3) and (4.4) follow from the integral identities (1.8) and (1.9) with the test functions
©° = e(x,t,x/2) (in (1.8)) and & = ££(x,t,x/2) (in (1.9)), where @(x,t,y) and &(x,t,y) are
arbitrary functions 1-periodic in y, by passing to the limit as £ \ 0.

Equations (4.5) and (4.6) result from homogenizing equations (4.1) and (4.2) over the elementary
cell Y, and equations (4.7) and (4.8) follow from the integral identities (1.8) and (1.9) with test
functions independent of the “fast” variable ¢ by passing to the limit as ¢ N\, 0 and applying the
continuity equations (1.5) and (1.6) to identity (1.9). O

4.3. Homogenized equations.

Lemma 4.3. The weak and strong limits p, w, 0, and w satisfy the following system of ho-
mogenized equations in .

P S o
rop sy + Vg = fod) = pF — div, <A1 :D(x, a—?) + Ay 1 D(2, W)

+ / Ag t—7):D(x,w(x, 7))+ B(t —1)div, w(x,7) + B(t — 7)0(x, T)) ClT) , (4.9)
0

ip +mdiv, w = — /(C’l(t —7) :D(x,w(x,7)) +a1(t — 7)div, w(x, 7)

*
0

+af(t = )00x,7)) dr - a()(O)a, (4.10)



iﬂ' + (1 —m)div, w = — /(C’g(t —7) :D(r,w(x,7)) + ax(t — 1) div, w(x, 7)

1o
0
Fal(t — 7)0(x, T)) dr + a(t)(0)q, (4.11)
Y. Op P 0 9 .
ToCp 5y — %a—’t’ - %a—z (Bos = Bor) 57 (a(){0)a) = diva (BG - Vo)) + 0. (4.12)

Here Ay, Ay, and As(t) are rank 4 tensors; B(t), B(t), Bf, Ci(t), and Cy(t) are matrices; and
ai(t), ax(t), af(t), a4(t), and a(t) are scalars. Erzact expressions of these objects are given below
(see (4.17)-(4.24)).

Proof. We set

Z(X t) ( %—W> — )\0]1))(% W) Zz'j =e;- (Z . Ej), Zl(t) = <9>Q,

3
Z zi(x,t)e; = (508 — »08) Vi, z2o(x,1) = div, w
=1

As usual, we seek solutions to the microscopic equations (4.1)—(4.4) in the form

W = /[WO (y,t =7)z0(x,7) + Z W9 (y, t —7)Zi(x,7)

i,j=1
+ Wy, t — 1) (0(x,7) — z1(7)) + Wi(y,t — 7)21(7)] dr, (4.13)
P = X/ Py, t —1)z0(x,7) + Z P9y, t —1)Z;;(x,T)
0 ig=1
+ Py, t —7)(0(x,7) — 21(7)) + PY(y,t — 7)21(7)] dr, (4.14)

3
I(y,t —7)20(x,7) + Z 09 (y,t — 1) 7 (x,7)

H(l—x)/t
0

ij=1
+ 1%y, t — T)(0(x,7) — 21.(7)) + O{(y,t — )21 ()| dr, (4.15)
O = Z O (y)zi(x, 1), (4.16)

where W0, W¢ W4 po po pi 110 119 1%, and ©° are functions 1-periodic in y and satisfying
the following initial-boundary value problems on the elementary cell Y.
Problem (I):
oW ij ij 4y pid
divy { xpoP{ 9, —— | + (1= x) (D (y, W) = (1 = )11V 4+ xP)L) ) =0,

1, ] y 1. ] py

p—PJerdlvyW]:O, n—H]+(1—X)d1VyW]:O

* 0

W9 (y,0) = W5 (y),  divy(x(1oD(y, W) +J9)) =0



Problem (II):

0
divy (xuo]D) (y, ag ) + (1= x) (AD(y, W) — ((1 = x)II° + XPO)H)> =0,

1 1
W0 (y,0) = 0, p—PO + x(div, WY +1) =0, %HO + (1 = x)(div, W + 1) = 0.

Problem (III):

0

div, (xuoD (yy 88—V¥> + (1= x) (AaD(y, W?) — ((1 —x)T1? + xP? — Bogx — Bos(1 — x))ll)> =0,

1 1
XWo(y,0) =0, p—P" +y div, W =0, n—H" + (1 —x) div, W = 0.
* 0
Problem (IV):

0
divy (xuoD (y, agl) + (1= ) (JoD(y, W) — (1= )T + XY = Borx — Bos(1 = x))ll)> =0,

1
W(y,0) =0, p—P{’ +x div, WY = —%<divy W),
*

I—x

1 . .
%H“{ + (1 = x) div, W¢ = (div, W‘;)>Ys—1 —.

Problem (V):
divy (xs0r + (1 — X) 205V, ©° + xe;) = 0.
Substituting expressions (4.13)—(4.16) into the macroscopic equations (4.5)—(4.8), we obtain

3 3
Al = pom Z J9 @ J9 oAb, AL = g Z (D(y, W§))y, © LR (4.17)
i,j=1 4,5=1
5. d
Ay =o(1=m) > JY @I = oA + oA (0),  As(t) = MOEA&@) — XA,  (4.18)
1,7=1
3 oW N g
IMOEDY {uo<JD><y, —>> + Mo(D(y, W), } @ JY, (4.19)
= ot )/, -
oW?
B(t) = uo<lD> (y, 50 >> + Ao(D(y, WO))y,, (4.20)
Y;
Ci(t) = =Co(t) = Y (divy W) J9, a(t) = (divy, W), (4.21)
i,5=1
ai(t) = —az(t) = (divy W)y, af(t) = —a3(t) = (div, W?), | (4.22)
OW?
Y;
3 . .
Bg = ;to]l -+ Z{%of<V@z>Yf + %OS<VGZ>YS} ® €e;, (4.24)

i=1

where 79 = mar + (1 — m)ss. O



Lemma 4.4. The tensors Ay, Ay, and As, the matrices B, BY, Bg7 C1, and Cs, and the
numbers ay, ag, a, a§, and a are well-defined infinitely differentiable functions of time.

If the porous space is connected, then the symmetric tensor Ay is strictly positive definite. Oth-
erwise (if the pores are isolated), Ay = 0 and the symmetric tensor Ag is strictly positive definite.
The symmetric matriz Bg 18 strictly positive definite as well.

The key points of the proof of the lemma, except the assertion concerning the matrix B, can
be found in [8]. The properties of the matrix Bf are well known (see [3, 15]).
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