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A system of differential equations describing the joint motion of thermo-elastic porous body
and slightly compressible viscous thermofluid occupying pore space is considered. Although
the problem is correct in an appropriate functional space, it is very hard to tackle due to
the fact that its main differential equations involve non-smooth oscillatory coefficients, both
big and small, under the differentiation operators. The rigorous justification under various
conditions imposed on physical parameters is fulfilled for homogenization procedures as
the dimensionless size of the pores tends to zero, while the porous body is geometrically
periodic. As a result, we derive Biot’s system of equations of thermo-poroelasticity, a similar
system, consisting of anisotropic Lamé equations for a thermoelastic solid coupled with
acoustic equations for a thermofluid, Darcy’s system of filtration, or acoustic equations for
a thermofluid, according to ratios between physical parameters. The proofs are based on
Nguetseng’s two-scale convergence method of homogenization in periodic structures.

1 Introduction

In this article a problem of modelling of small perturbations in a thermoelastic deformable
solid, perforated by a system of channels (pores) filled with compressible viscous thermo-
fluid, is considered. The solid component of such a medium is called skeleton, and the
domain which is filled with a fluid is named a pore space. The exact mathematical model
of such a medium consists of the classical equations of momentum, energy and mass
balance, which are stated in Euler variables, of the equations determining stress fields and
thermodynamics law in both solid and liquid phases, and of a relation determining the
behaviour of the interface between liquid and solid components. This relation expresses
the fact that the interface is a material surface, which amounts to the condition that
it consists of the same material particles all the time. Clearly, the above-stated original
model is a model with an unknown (free) boundary. The more precise formulation of the
non-linear problem is not the focus of our present work, because the influence of the free
boundary and the influence of convective terms in Navier-Stokes equations are negligible
(the liquid velocity in pores is about six metres per year). Therefore we aim to study the
problem linearized with respect to the stress tensor and displacements at the rest state.
We suppose that the stress tensor is a linear function of the displacements and that in the



liquid component the viscosity depends on temperature. In this model the characteristic
function of the pore space ¥ is a known function for ¢ > 0. It is assumed that this function
coincides with the characteristic function of the pore space ¥, given at the initial moment.
The model obtained in this way when the viscosity doesn’t depend on the temperature
has been studied in [11].

In dimensionless variables (without primes),

X =Lx, t'=1, w=Lw, 0 =30,

the differential equations of the problem in the domain @ € R? for the dimensionless
displacement vector w of the continuum medium and the dimensionless temperature ¢

have the form ,

_O'w . _

"PFE = divIP + pF, (1.1)

_ a6 s 0, ..
Cra; = div(a, Vo) — % (divw), (1.2)
P = 7P +(1— )P, (1.3)

9

P’ = 0,0 (O)D(x, 5 ) — (b + s 0)I, (14)
IP* = o;ID(x, w) + (o, (div w — o, 0)L (1.5)
ps + 70pdivw = 0. (1.6)

Here and subsequently we use notations
D(x,u) = (1/2) (Vu+ (Vw)"),  p=7ps + (1= 7)ps,

Cp = XCpf + (11— Z)Cp& Oy = s + (1= Poves, o = Toer + (1= X)ags,
I is the unit tensor, the given function %(x) is a characteristic function of the pore space,
the function F(x,t) is a dimensionless vector of distributed mass forces, IP is the liquid
stress tensor, IP° is the stress tensor in the solid skeleton and py is the liquid pressure. The
given function v(8) is a dimensionless viscosity, such that v(6.) = 1.

The differential equations (1.1)—(1.6) mean that the the displacement vector w and the
temperature 6 satisfy the non-isothermal Stokes equations in the pore space Q; (y = 1)
and the non-isothermal Lamé equations in the solid skeleton Q; ( = 0). On the common
‘solid skeleton—pore space’ boundary I” the displacement vector w, the temperature 6 and
the liquid pressure p; satisty the usual continuity conditions

[W](x,1) =0, [0](x0,8) =0, xg ", t =0, (1.7)
the momentum conservation law and the heat conservation law in the form
[P n](xp,t) =0, [&,V0 n]|(x0,2)=0, xo€ ', t =0, (1.8)
where n(xg) is the unit normal to the boundary at the point xo € I’ and

[@](x0,1) = @(o)(X0, 1) — @(5)(X0, 1),
P(xX0,t) = lim @(x,1), @)(x0,t) = lim o@(x,1).
X*’XO X*’XO

x€E Qs xe{lf



The problem is endowed with initial conditions
ow
W(X> 0) = 07 a(’g 0) = UO(X)> 0(X> 0) = QO(X)> xeQ (19)
and homogeneous boundary conditions
wx,1)=0, 8(x,t)=0, xeS5=0Q, t=0. (1.10)

One may find the exact expression of the dimensionless constants o; (i = 7,v,...) in
[11]. In particular,

L 2. 24 Apy n
Oy = —=, Oy = , Uy = s, Op = —5—, Oy = s
grr’ " tgpoL gpol” P Lg” " Lgpo

where v. is the viscosity of fluid at the temperature 8 = 6., A and # are the elastic Lame
constants, »; and », are heat conductivities in the liquid and in the solid components
respectively, ¢ is a speed of sound in fluid, L is a characteristic size of the domain in
consideration, 7 is a characteristic time of the process, ps and p, are the mean dimensionless
densities of the liquid and rigid phases, respectively, scaled with the mean density of water,
and g is the value of acceleration of gravity.

From a purely mathematical point of view, the corresponding initial-boundary value
problem (1.1)—(1.10) is well posed in the sense that it has a unique solution belonging to a
suitable functional space on any finite time interval (see [11]). However, regarding possible
applications, for example, for developing numerical codes, this model is inappropriate
because of its complexity even if a modern supercomputer is available. The differential
equations of the model involve rapidly oscillating non-smooth coefficients, which have the
form of linear combinations of the function y. These coefficients undergo differentiation
with respect to x and besides may be very big or very small quantities as compared to the
main small parameter ¢ In the model under consideration we define the dimensionless
size of the pores ¢ as the characteristic size of pores I divided by the characteristic size L
of the entire porous body:

&= —.

L
Therefore the question of finding an effective approximate model is vital. Since the model

involves the small parameter ¢, the most natural approach to this problem is to derive

models that would describe limiting regimes arising as ¢ tends to zero. Such approximations

significantly simplify the original problem and at the same time preserve all of its main

features. But even this approach is too hard to work out, and some additional simplifying

assumptions are necessary. In terms of geometrical properties of the medium, the most

appropriate is to simplify the problem postulating that the porous structure is periodic.
We assume the following constraints.

Assumption 1 The domain Q = (0,1)’ is a periodic repetition of an elementary cell
Yé = eY, where Y = (0,1)° and the quantity 1/¢ is an integer, so that Q always
contains an integer number of elementary cells Y¢ Let Y; be a ‘solid part’ of Y, and
the ‘liquid part’ ¥; be its open complement. We write y = 0Y; N 0Y, and take y as a



Lipschitz-continuous surface. A pore space Qf is a periodic repetition of the elementary
cell Yy, and a solid skeleton Q¢ is a periodic repetition of the elementary cell &Y.
A Lipschitz-continuous boundary I'* = 0Qf N 0Qf is a periodic repetition n Q of
the boundary ey. The solid skeleton Q¢ is a connected domain and an intersection Q°
with any plane {x; = constant, 0 < x; < 1, i = 1,2,3} is an open (in plane topology)
set.

In these assumptions
2(x) = 1 (x) = x(x/e),
p=p'(x) = " (X)py + (1= ' (x))ps,
¢ = ¢p(x) = 2 (X)epr + (1 = 1 (x))cps,
O = o (X) = 1 (X0t + (1 — 17 (x))0bes,

ay = og(x) = 1 (X)atgy + (1 — x°(x))tgss
where x(y) is the characteristic function of Y, in Y.
We say that a pore space is disconnected (isolated pores) if

yNdY = 0.

Suppose that all the dimensionless parameters depend on the small parameter ¢ and
there exist limits (finite or infinite)

limo(e) = 7o, limo,(e) = o, limo(e) = o, lim =% = .

The first research with the aim of finding limiting regimes in the case when the skeleton
was assumed to be an absolutely rigid isothermal body was carried out by E. Sanchez-
Palencia and L. Tartar (see [14]). E. Sanchez-Palencia [14, Sec. 7.2] formally obtained
Darcy’s law of filtration using the method of two-scale asymptotic expansions, and L.
Tartar [14, Appendix] mathematically rigorously justified the homogenization procedure.
Using the same method of two-scale expansions, J. Keller and R. Burridge [2] derived
formally the system of Biot equations [3] from the isothermal model (1.1)—«(1.10) (af = 0)
in the case when 0 < u; < oo, and the rest of the coefficients were fixed independent of &,
It is well known that the various modifications of Biot’s model are the bases of seismic
acoustics problems to date. This fact emphasizes the importance of a comprehensive study
of the model (1.1)—(1.10) one more time. J. Keller and R. Burridge [2] also considered
the same problem under the assumption that all the physical parameters were fixed
independent of ¢ and formally derived, as a result, a system of equations of visco-
elasticity.

Under the same assumptions as in the article [2], the rigorous justification of Biot’s
model was given by G. Nguetseng [13] and later by Th. Clopeau et al. in [4]. Also R.
Gilbert and Mikelic [5] have rigorously derived a system of equations of viscoelasticity,
when all the physical parameters were fixed independent of & The most general case
of the isothermal model has been studied in [8]. In these papers Nguetseng’s two-scale
convergence method [7, 12] was the main method of investigation.



In the present publication we investigate all possible limiting regimes in the problem
(1.1)~(1.10) by means of this method. This method, in a rather simple form, reveals the
structure of the weak limit of a sequence {z°} as ¢ \ 0, where z° = ufv® and sequences
{u} and {v°} converge as ¢ v 0 merely weakly, but at the same time the function #* has
the special structure u?(x) = u(x/e) with u(y) being periodic in y.

Moreover, this method allows us to establish asymptotic expansions of a solution of
the problem (1.1)—(1.10) in the form

W(x, 1) = &f (Wo(x, £)+ ewy (x, : %) n 0(8)) , (111)

where wo(x,1) is a solution of the homogenized (limiting) problem, wi(x,7,y) is a solution
of some initial-boundary value problem posed on the generic periodic cell of the pore
space and the exponent f is defined by dimensionless parameters of the model. In some
situations expansion (1.11) has a more complicated form like

wi(x, 1) = &P (w{;(x, t)+ SW{ (x, t, 5) + 0(3)) ,
&
in the liquid component and
wi(x, 1) = &P (Wf)(x, t) + ew) (X, t, %) + 0(8)) ,

in the rigid component.
We restrict our consideration to the cases with 7o < oo and one of the following occurs:

@ to =0, 0 < Ao < oo;
(II) 0 <00, 4o=co.

If 79 = oo, re-normalizing the displacement vector and temperature by setting
w— oW, 06— o0,

we reduce the problem to one of cases (I) and (II).

Note that anisothermic case (II) for the inhomogeneous boundary conditions has been
considered in [9] and that anisothermic cases (I) and (II) for incompressible media have
been considered in [10].

2 Formulation of the main results

There are various ways, equivalent in the sense of distributions, of representing equations
(1.1)~(1.2) in each domain Qf and Qf and boundary conditions (1.7)-(1.8) on the common
boundary I'* between pore space Q7 and solid skeleton ©¢. In what follows, it is convenient
to write them in the form of the integral equalities.

Definition 1 We say that (Wg, 08,p§,p§) is a generalized solution of the problem (1.1)-
(1.10), if the following are satisfied:



(1) Vwe, VE°, pfp, p? € L2(Q7) in the domain Q = Q x (0, T);
(i1) the boundary condition (1.10) on the outer boundary S in the trace sense;

(iii) the equations
1
—p5 = —y*divw* 2.1
" py = —x'divw’, (2.1)
1 & M &
—pi = —(1 — y*)divw (2.2)
Oy

ae in Qr;

(iv) the integral identity

/QT (,ogocfw8 . 662—;20 — v (0)D(x, w¥) : ]D(x, %—f) —p'F-o
+{(1— )uD0x W) — (5 + pt + 26T} : D(x, go)) dxdt
= /ngocfvé(x) ~(x,0)dx (2.3)
for all smooth vector-functions ¢ = ¢(x,t) such that
px,1)=0, x€8,t>0; oxT)= %—g:(x,T)zo, X € Q;

and

(v) the integral identity
& e & M & af & & & e
/Q ((cp(? +ogdivw )a AL Vf) dx dt = —/Q cp06(x)E(x,0) dx (2.4)

for all smooth functions ¢ = £(x, t) such that

Ex,1)=0, xe8,t>0; &x,T)=0, xeQ.

In this definition we changed the form of representation of the stress tensor IP in the
integral identity (2.3) by introducing a new unknown function pé, which is something like a
pressure. In what follows we call this function p¢ a solid pressure and regard equations (2.1)
and (2.2) as continuity equations. This special choice of continuity equations simplifies
the use of the homogenization procedure.

In (2.3) A4 : B denotes the convolution (or, equivalently, the inner tensor product) of two
second-rank tensors along both the indexes, i.e., A:B =tr(B" o 4) = Zi i1 A4ijBji.

Suppose additionally that there exist limits (finite or infinite)

limty(e) = pe, limoty(e) = o, limava(e) =0, limota(e) = o,

where i = f,s.
We assume also



Assumption 2

(1) The dimensionless parameters satisfy the restrictions

%0i, Bois Pr. N0, To, fo <0, 0 <o, To+ l1, Ao, Pr N0,

where i = f,s.

(2) The functions F and 0F /0t are bounded in L*(Q7) and the sequences {v§} and {65}
converge strongly in L?(Q) to the functions vy and 6o, respectively.

(3) The smooth function v(8) is strictly positive and bounded for all §:
0<v<v(@)<vyl, veCH—o00m0).

In what follows all parameters may take all permitted values. For example, if 7o = 0
or fios = 0, then all terms in the homogenized equations containing these parameters
disappear.

The following theorems (Theorems 1-3) are the main results of the paper.

Theorem 1 For all ¢ > 0 on the arbitrary time interval [0, T| there exists a generalized
solution of the problem (1.1)—(1.10) and the following assertions hold:

[max WAl + o IVWAE] + Jaa(L = xO)IVW ()l 2o < C, (25)
& & <

max 10°(8) |20 + VO |20, < C, (2.6)

P} l2ar + 10520, < C, (2.7)

where C is a constant independent of the small parameter e.

Theorem 2 Let v(0) = 1, up = 0 and Ay < co. Then functions w* admit an extension
w from QF x (0, T) into Qr and there exist a subsequence of small parameters {¢ > 0}
and functions w, w, py, ps and 0, such that the sequence {u®} converges strongly in L*(Qr)

and weakly in L*((0, T); WH(Q)) to the function u €W, (Qr). At the same time sequences

{wel, {p%) and {pg} converge weakly in LX(Qr) to W, py and ps, respectively and sequence

{0%} converges strongly in L*(Qr) and weakly in L*(((0, T); W} (Q))) to the function 6.
The following assertions for these limiting functions hold:

(1) If uy = oo or the pore space is disconnected, then w = u and the strong and weak limits
u, 9, py and ps satisfy in Qr the initial-boundary value problem

. 0%u - . . s s 4 s
005y + V(ps + ps + Po8) — pF = div (Ao A : D(x,u) + B divu + B (B0 + ps)), (2.8)

¢ Pyl Pulhs e v, (2.9)

1 .
n—ps—i-(]:f) :ID(x,u) + aj divu+ aj (B0 + py) =0, (2.10)
0



1 1 .
—py + —ps +divu=0. (2.11)
D+ o

Here
:5 = mpy + (1 - m)ps> CAp = McCpy + (1 - m)cps>

o=y + (1=l B =mifos = o). m= [ (v

and the symmetric strictly positively defined constant fourth-rank tensor A3, constant
matrices ©, By and B, strictly positively defined constant matrix BY and constants a}
and aij are defined by (5.31)—(5.33) and (5.49).

The differential equations (2.8)—(2.11) are endowed with initial conditions at t = 0 and
x € Q

d
0 =00, tu=n1 (a—'t‘ — v0> —0, (2.12)

and homogeneous boundary conditions

0x,t)=0, uxt)=0 xe8, t>0. (2.13)

(ID) If y < oo, then the strong and weak limits u, 0, w/, p; and ps of the sequences {u¢},
{0°), {'we), {p}} and {p5} satisfy the initial-boundary value problem in Qr, consisting of
the heat equation (2.9), the balance of momentum equation

ov o%u ~ .
m<m5;+mﬂ—ﬂm5§>+V@f+m+ﬁW%wW
= div(4oA} : D(x,u) + Bidivu+ B{(86 + py)), (2.14)

where v = 0w/ /0t and A, By and B are the same as in (2.8), the continuity equation
(2.10) for the solid component and the continuity equation

1 0p; 1 Ops L . Ou
;E %E + divv = (m l)le&, (215)

for the liquid component, and either the relation
du t
v=m— + [ Bi(t—r1) h(x,1)dr, (2.16)
0
where

he —v( Lp, +B0s0 ) +pF—< u
= by + fos Pr 0PrEa

in the case of 79 > 0 and yuy > 0; or Darcy’s law in the form
du 1 1
v=m§+EIB2~ (—V(Epf-i-ﬁOf@) —l—pfF) (2.17)
in the case of 7o = 0; or, finally, the balance of momentum equation in the form
v o%u 1
‘Copfa = 19p7B3 - e + (mll— Bs) - (- \% (Epf + ﬁw@) + pfF> (2.18)

in the case of uy = 0 for the liquid component.



The problem is supplemented by boundary and initial conditions (2.12)-(2.13) for dis-
placement u of the rigid component and for temperature 8 and by the initial and boundary
conditions

To(v(x,0) —mvg(x)) =0, x€Q, (2.19)

v(ix,7) n(x)=0, xe€8, t>0 (2.20)
Jor the velocity v of the liquid component. In (2.16)—(2.20) n(x) is the unit normal vector

to S at a point x € S, and matrix B,(t), symmetric strictly positively defined matrices B,
and (mll — Bs) are defined below by formulas (5.42), (5.44) and (5.46).

Theorem 3 et 1o = oo and 1y < oo. Then the functions w® admit an extension W from
Q8 x (0, T) into Q7 and there exist a subsequence of small parameters {&¢ > 0} and functions
w/, ps and 0, such that the sequence {u?} converges strongly in L*((0, T); W(Q)) to zero. At
the same time sequences {y*w*} and {p};} converge weakly in L*(Q7) tow! andopf respectively
and sequence {0°} converges strongly in L>(Qr) and weakly in L2((0,T); W) (Q)) to the
Sfunction 6.

(1) If tg > 0 and ;> 0, then the functions v = 0w/ /dt, 6 and py solve the problem (I},
which consists of the continuity equation

1 2

vy = 2.21
P +divy =0, (2.21)

the heat equation

<00 PorOpr g
é T 5 = div(IB” - V§), (2.22)
and the relation
v(X, 1) = mvo(x) + / Bi(r — &) 2(x,&)dE, (2.23)
0

where
1 1
Z(x,t(x, 1)) = zx,t) = ———— | V| —ps + Pos8 | + psF |,
st =ats) == (9 (o ) + 57
and the function t©(x,t) is defined by the Cauchy problem
ot
Pl v(@(x, t)), 7(x,0) = 0. (2.24)
(2) If 1o = 0 and wy > 0, then the functions v, 8 and p; solve the problem (F3), which
consists of equations (2.21) and (2.22) and Darcy’s law in the form

1 1

Finally,
(3) if to > 0 and py = 0, then the functions w', 6 and ps solve the problem (F3), which
consists of equations (2.21) and (2.22) and the balance of momentum equation (2.18),
where u= 0.

In (2.22)-(2.25), matrices BY, By(t) and B, are the same as in Theorem 2.



Problems Fi—F5 are endowed with initial and boundary conditions (2.19) and (2.20) for
the velocity in the liguid component and initial and boundary conditions (2.12) and (2.13)
for the temperature.

3 Preliminaries
3.1 Two-scale convergence

Justification of Theorems 2-3 relies on systematic use of the method of two-scale conver-
gence, which had been proposed by G. Nguetseng [12] and has been applied recently to
a wide range of homogenization problems (see, for example, the survey [7]).

Definition 2 A sequence {w®} = L2(Qr) is said to be two-scale convergent to a 1-periodic
in'y function W(x,t,y) € L*(Qr x Y), if and only if for any I-periodic in y function
c=0a(x,ty) € LXQr xY),

/ wi(x, t)a(x, t,§> dx dt — / / W(x,t,y)o(x,t,y)dydxdt (3.1)
Qr € QrJY
as e — Q.

Existence and main properties of weakly convergent sequences are established by the
following fundamental theorem [7, 12]:

Theorem 4 (Nguetseng’s theorem)
(1) Any sequence bounded in L*(Qr) contains a subsequence, two-scale convergent to some
I-periodic in 'y function W(x,t,y) € L*(Qr x Y).

(2) Let the sequences {w} and {eV,w¢} be uniformly bounded in L*(Qr). Then there exist
a I-periodic in'y function W = W(x,t,y) and a subsequence {w*} such that W,V ,W €
L*(Qr X Y), and the subsequences {w*} and {eVw*} two-scale converge to W and V,W,
respectively.

(3) Let the sequences {w®} and {V.w®} be bounded in L*(Q). Then there exist functions
w € L2(Qr) and W € L(Qr x Y) and a subsequence from {V,w®} such that the function
W is 1-periodic in 'y, Vyxw € LXQr), V,W € L*(Qr x Y), and the subsequence {V,w®}
two-scale converges to the function (Vyw(x,t) + V,W(x,t,¥)).

Corollary 1 Let ¢ € L*(Y) and o°(x) = o(x/e). Assume that a sequence {w®} = L*(Qr)
two-scale converges to W € L}(Qr x Y). Then the sequence {a*w?®} two-scale converges to
the function cW.

3.2 An extension lemma

The typical difficulty in homogenization problems, like problem (1.1)—(1.10), while passing
to a limit as ¢ \ O arises because the bounds on the gradient of displacement Vw* may
be distinct for the liquid and rigid components. The classical approach in overcoming this



difficulty consists of constructing an extension to the whole of Q of the displacement field
defined merely on Qg or Q;. The following lemma is valid due to the well-known results
from [1, 6]. We formulate it in an appropriate form for us:

Lemma 3.1 Suppose that assumption 1 on the geometry of the periodic structure holds,
we € Wi(QF) and w* = 0 on S¢ = 0Q% N OQ in the sense of traces. Then there exists a
Sunction ué € W(Q) such that its restriction to the sub-domain Q¢ coincides with we, i.e.,

(1= x)'(x) —wi(x)) =0, x€, (3.2)
and, moreover, the estimates
[u 20 < ClW 200 VU |20 < CVW |20 (3.3)

hold, with the constant C depending only on the geometry Y and not on &.

3.3 The Friedrichs—Poincaré inequality in periodic structure

The following lemma was proved by L. Tartar in [14, Appendix]. It specifies the Friedrichs—
Poincaré inequality for e-periodic structure. We formulate this lemma for our particular
case just to estimate functions in the e-layer Q¢ of the boundary S. This domain Q¢
consists of all elementary cells eY touching the boundary 0Q. We consider a special
class of functions w®, which are extensions, from subdomain Q¢ onto whole domain Q, of
functions w* € W;(Q¢) vanishing on the part S¢ = 00Q¢ N 3Q of the boundary S = dQ
(see Lemma 3.1). Due to the supposition on the structure of the pore space, the intersection
of the boundary of the ‘solid part’ Y; with sides of the boundary 3Y is a set with non-
empty interior and strictly positive measure. Therefore on each side of the boundary S
the function v’ is equal to zero on some set with non-empty interior, periodic structure
and strictly positive measure, independent of &,

Lemma 3.2 Suppose that the assumptions on the geometry of Q5 hold. Then for any func-
tion w* € Wi(Q) such that w* = 0 on the part S; = 0Qf N 0Q of the boundary S and for

any function v¢ €W} (Qf) the inequalities
[ué)? dx < ng/ |Vue)? dx (3.4)
o° o°

and

Ve2dx < Ce? | |Vve| dx (3.5)
QS

2 7

hold with some constant C independent of the small parameter e.

3.4 Some notation

We define



(1)
<¢>Y=/Yd>dy, <d>>yf=/de>dy, <¢>YS=/Y(1—x)d>dy,

(p)o Z/Qq)dx, (@), Z/QTgodxdt.

(2) If a and b are two vectors then the matrix a ® b is defined by the formula
(a®@b)-c=ab ¢

for any vector c.
(3) If B and € are two matrices, then BB ® C is a fourth-rank tensor such that its
convolution with any matrix A is defined by the formula

(B® C):A=B(C:A).

(4) By IV = ¢; ® ¢; we denote the 3 x 3 matrix with just one non-vanishing entry, which
is equal to 1 and stands in the i-th row and the j-th column.
(5) We also introduce the matrices

I T | oo
T =S+ = Sleive+e0e), = > I e b,
ij=1

where (e;, e;,e3) are the standard Cartesian basis vectors.

4 Proof of Theorem 1

The existence of the generalized solution to the problem (1.1)—(1.10) for the case v(0) = 1
has been proved in [11]. The non-linear problem is considered in the same way. To derive
the desired estimates we consider the equation

d e awg 2 . N 8
E/Q (P ocf<§> + o3 (1 — )D(x, w) : ID(x, w¥)

+ 5(0°) + apy(div wh)? 4 ot (1 — 1°)(div wg)2> dx

. owey ow’ R B 0w’
+ /Q <OCHV(0)X ]D(x,§> .]D(x,§> + o | VO >dx- /QF Fdx. (4.1)

We obtain this by multiplying the equation for w® by 0w®/0t, the equation for §¢ by 6%,
summing the result and integrating by parts, using the continuity equations (2.1} and
(2.2). Note that all terms on the common interface I'?, the ‘solid skeleton—pore space’,
disappear due to boundary conditions (1.7) and (1.8).

Estimates (2.5) and (2.6) now follow from this energy equation. In fact, if 7o > 0, then
we just use the Holder and Gronwall inequalities in (4.1) to get (2.5) and (2.6) together
with estimate

/ (ot (divw®)? + o, (1 — 7*)(divwé)*) dx < C. (4.2)
o



Estimates (2.7) for pressure follow from the continuity equations (2.1) and (2.2) and
estimate (4.2).

Estimation of w® in the case 7o = 0 is not simple, and we outline it in more detail. We
again use (4.1). The term F - 0w?/0t needs additional consideration here. First of all, on
the strength of Lemma 3.1, we construct an extension u® of the function w® from ¢ into
Q such that v* = w* in Q¢, v* € W}(Q) and

C
W0 < CIVU |20 < — (1 — x°) o VW |20

N

Then we estimate |w®[|,o with the help of Triedrichs—Poincaré’s inequality (3.5) for a
periodic structure (Lemma 3.2) for the difference (u® — w):

W20 < W20 + u® —Wooo < U020 + Ce| V(W — w)|20

1
< oo + Ce| V' 20 + Cleay *) |2 o VW (20 <
C
N2
Next we integrate the result with respect to time over the interval (0,ty), pass the time

derivative from Ow?®/0t to p?F and bound all together in the usual way with the help of
Hélder and Gronwall’s inequalities.

1
11— ) VW0 4+ Cleay ) 11" VW |20

5 Proof of Theorem 2
5.1 Weak and two-scale limits of sequences of displacement and pressures

On the strength of theorem 1, the sequences {p;}, {p}, {w’} and {V6°} are bounded in
L*(Q7) uniformly in &. Hence there exist a subsequence of small parameters {& > 0} and
functions py, ps, w and 0, such that Py = by, Py = Ps, W — W weakly in L*(Q) and

6° — 0 strongly in L*(Qr) and weakly in L*>(0, T; W5 (Q)) as & \ 0.
Relabelling if necessary, we assume that the sequences converge themselves. At the
same time

7fo,D(x, w') = 0 (5.1)

strongly in L?(Q7) and the sequence {divw?} converges weakly in L*(Qr) to divw as
e N O
Moreover, due to extension Lemma 3.1 there are functions

w e L0, T:Wi(Q))
such that u* = w? in Q x (0, T'), u®* = 0 on the part S¢ of the boundary S and

& & <
max (|u(r) 20 + V(1) 20) < C. (52)

where C does not depend on the small parameter e.



Estimate (5.2) follows from estimates (2.6) and (3.3).

Lemma 5.1 Let the sequence {u¢} satisfy (5.2)and w* = 0 on the part S¢ of the boundary
S. Then there exist a subsequence of {¢ > 0} and function

ue L0, T: Wy (Q)),
such that u¢ — u weakly in L*(0, T: W)(Q)) and strongly in L*(Qr) as & \ 0.

The proof of the lemma is standard and based on the Friedrichs-Poincaré inequality
(3.4).

On the strength of Nguetseng’s theorem, there exist functions Py(X,t,y), Ps(X.t,y),
Wix,t,y), ©(x,t,y) and U(x,,y) which are periodic in y such that the sequences {pj},
{pe}, {w°}, {VO°} and {Vu} two-scale converge to Ps(x.t,y), Py(x,t.y), W(x,1,y), VO(x, 1)+
V,0(x,t,y) and Vu(x, t) + V,U(x,t,y), respectively.

5.2 Micro- and macroscopic equations I

Lemma 5.2 For almost all x € Q and for almost all y € Y the weak and two-scale limits
of the sequences {p}, {ps}, {w'} and {u’} satisfy the relations

Py=pit.  Pi=(1-pP, (53)
nips + (1 —m)divu+ ({div,U)y, = 0, (5.4)
0
WLPS + (1 — ) (divu + div,U) = 0, (5.5)
0
1 1 .
—ps+ —ps +divw =0, (5.6)
D+ Mo
w(x, 1) n(x)=0, x¢€8§, (5.7)
div,W =0, (5.8)
W= (1— yu+ W, (5.9)

where n(x) is the unit normal vector to S at a point X € S.

Proof In order to prove (5.4), insert a test function y® = ey (x, t, x/s) into (2.3), where
y(x,t,y) is an arbitrary 1-periodic function in y finite on Y;. Passing to the limit as & \ 0,
we get

V,P(x,t,y) =0, yeTY;. (5.10)
Next, taking the two-scale limit in
xXps=0, (1—=x)p;=0
we arrive at
yPs =0, (1—x)P;r=0
which along with (5.10) prove (5.4).



Equations (5.5)—(5.8) appear as the results of two-scale limits in (2.1) and (2.2) with
appropriate test functions being used. Thus, for example, (5.6) and (5.7) arise, if we
consider the sum of (2.1) and (2.2),

1 1 .
—p; + —p; +divw =0, (5.11)
%p Oy

multiply by an arbitrary function, independent of the ‘fast’ variable x/¢, and then pass to
the limit as ¢ \v 0. In order to prove (5.8), it is sufficient to consider the two-scale limiting
relations in (5.11) as e \v O with the test functions ey (x/e) h(x,t), where  and h are
arbitrary smooth functions. In order to prove (5.9) it is sufficient to consider the two-scale
limiting relations in

(1 — )W —u’) =0. O
Lemma 5.3 Let Bo(y) = Bosx(y)+ Pos(1—x(y)). Then for almost all (x,t) € Qy the relation

aiv, (7a(1 = (D) + D = (Pt Lyt o) 1) =0 (s12)
holds.

Proof Substituting a test function of the form y* = ey (x,£,x/¢), where yp(x,t,y) is an
arbitrary function 1-periodic in y vanishing on the boundary S, into integral identity (2.3),
and passing to the limit as ¢ N\ 0, we arrive at (5.12). O

Lemma 54  Let p = mpy + (1 — m)ps and Bo = mfos + (1 — m)Bos. Then functions
w = (W) Y;» W Py, Ps and 0 satisfy in Qr the system of macroscopic equations

o’w/ Pu
0P + Tops(l —m)=5 — pF
= div(Zo((1 — mD(x.u) + (D(y. U))y,) — (ps + ps + o)1), (5.13)

with initial conditions

t0(prw + ps(1 —mu) =0, (5.14)

ow' du
ro<pfw+ps(1—m)a—pvo>=0, x € Q.

Proof Equations (5.13) and initial conditions (5.14) arise as the limit of (2.3) with test
functions being independent of & inQr. O



5.3 Micro- and macroscopic equations II

Lemma 5.5 [f u = o, then the weak limits of {w*} and {w*} coincide and
w = mw.

Proof Let W(x,t,y) be an arbitrary smooth function periodic in y. The sequence {afj},
where

owé
o= [ P (/e = ()
J

is uniformly bounded in & Therefore,

ow? &,
e (x, )V (x,t,x/e)dx = —0;; > 0
o 0X; for
as ¢ N\ 0, which is equivalent to

il
[ [ wixenSoonydxdy =0, W= (1. w2,
oJy 0y;
or W(x,1,y) = w(x,t). Therefore taking the two-scale limit as ¢ v O in the equality
(1= ) —w) =0,

we arrive at the first statement of the lemma. The last statement follows from the definition
of w/. O

Lemma 5.6 Let g < co. Then the weak and two-scale limits py and V = OW /3t satisfy
the microscopic relations

ov 1

‘L'Opf§ =mAV—-V,R~— V(Epf + ﬁ()f@) +piF, yeyy, (5.15)
du
V=5 Y& (5.16)
in the case uy > 0, and relations
ov 1
wpr 5, = VR =V{ —pr+for0 | +p/F, y ey, (5.17)
9

(V‘a_u)“zo’ e (5.18)

in the case iy = 0.
Differential equations (5.15) and (5.17) are endowed with initial condition

7o(V(y,0) —vo) =0, y € ;. (5.19)

In (5.18) n is the unit normal to 7.



Proof The differential equations (5.15), (5.17) and initial conditions (5.19) follow as ¢ \ 0
from the integral equality (2.3) with the test function

p = o(x/e) " h(x,1),

where ¢ is solenoidal and finite in Y.

Boundary condition (5.16) is a consequence of the two-scale convergence of { /&, Vw*} to
the function /i1 V,W(x,t,y). On the strength of this convergence, the function V,W(x,t,y)
is L’-integrable in Y. The boundary condition (5.18) follows from (5.8) and (5.9). O

Lemma 5.7 [For all (x,t) € Qr and y € Y strong and two-scale limits 6 and @ satisfy
the microscopic equations

divy, (%(y)N(VO + V,0)) = 0, (5.20)
where xo(y) = x(¥)xo5 + (1 — x(¥))os.
The proof of this lemma repeats the proof of Lemma 5.3.
Lemma 5.8 For all (x,t) € Qr strong and week limits 8, py and p; satisfy the macroscopic

heat equation

» 00 BorOpy  PosOps _ oo
% p ot om0t 0 21
e T b G T (5.21)

where %o = (x0)y, ¢, = mcyp + (1 — m)cps and initial condition
0(x,0) = Og(x), x € Q.

The proof of this lemma follows that of Lemma 5.4, if we initially exclude the term
oy div w® in the integral identity (1.4) using the continuity equations (1.1) and (1.2).
Lemma 5.9 If the pore space is disconnected, which is the case of isolated pores, then
u=w.

Proof Indeed, in the case 0 < y; < oo the systems of equations (5.8), (5.15) and (5.16) or
(5.8), (5.17) and (5.18) have the unique solution W = u. O

5.4 Homogenized equations I
In this section we derive homogenized equations for the solid component.

Lemma 5.10 If 1y = oo or the pore space is disconnected then w = u and strong and
weak limits w, 0, p; and ps satisfy in Qr the initial-boundary value problem

%u 4 N
Qryey + V(ps + ps + Bob) — pF = (5.22)
div(Zo4) : D(x,u) + B divu+ B{(80 + py)), (5.23)
1 .
n—ps + @ : D(x,u) + aydivu+ aj(f0 + ps) = 0, (5.24)
0

1 1 .
—ps + —ps +divu =0, (5.25)
D+ Ho



where B = m(Bos — Pos), the symmetric strictly positively defined constant fourth-rank tensor
B3, matrices €, By and B; and scalars ay and a; are defined below by formulas (5.31)-
(5.33).

Differential equations (5.22) are endowed with homogeneous boundary condition

ux,1)=0, xe8, t>0 (5.26)
and initial conditions

Tou(x,0) = 0, 70 (%(x, 0)— vo(x)> =0, xeQ. (5.27)

Proof First of all note that due to Lemmas 5.5 and 5.9, v = 0w/0t.
The homogenized equation (5.22) follows from the macroscopic equation (5.13), after
we insert in the relation

Ao(D(y, U))y, = AT :ID(x,u) + B divu + B 6 + B (y)(S0 + py).

In turn, this follows by virtue of solutions of equations (5.5) and (5.12) on the pattern cell
Y,. In fact, setting

3
U= Z U(y)Dy; + U%(y)divu+ UM (y)(BO + py),
ij=1

3

Py = 1o Z PY(y)Dy; + P°(y) divu + P (y)(y)(B6 + py).
ij=1
where

1/ ouy ou;
Djj(x,t) = 5 (a_x,-(x’ )+ ax]i (x, t));

we arrive at the following periodic-boundary value problems in Y :

div, {(1 — x)(D(y, UY) — PU T+ JV) = 0,

(1 - X) (#P(iﬁ + diVyU(ij)> =0; (5.28)
0
div, ((1 — z)(AD(y, UY) — POT)) =0,

(1—1y) (ﬂiop“n + div, UY + 1) =0; (5.29)
div, ((1 ) (eD(y, UY) — pOT) — %n) _o,

(1—19) (ﬂiopm + diva“)> =0. (5.30)



On the strength of the assumptions on the geometry of the pattern ‘liquid’ cell Y,
problems (5.28)—(5.30) have unique solutions, up to arbitrary constant vectors. In order
to discard the arbitrary constant vectors we demand

(U7)y, = (UY)y, = (UY);, =0,

¥ ¥ ¥

Thus
3

A =(1—-mI+a, a= > (D UW))>YS ® I, (531
ij=1
B; = /o(ID(y,UM))

Symmetry and strict positiveness of the tensor Aj have been proved in [8].
Equations (5.24) and (5.25) for the pressures follow from (5.4) and (5.6) and the equality

b i=01 (5.32)

(div,U)y, = €§ : ID(x,u) + aydivu + aj (6 + py)

with
3
¢ = Z <diVyU(ij)>Y;Uij’ a; = <diVyU(i)>

ij=1

v, i=0,L (5.33)
Finally note that the initial conditions (5.27) follow from initial conditions (5.14) and
(5.19), if we take into account Lemmas 5.5 and 5.9. O

5.5 Homogenized equations 11

We complete the proof of Theorem 2 with homogenized equations for the liquid compon-
ent.

If 4y < oo, then, in the same manner as above, we verify that the strong and weak
limits w, 0, py and p; satisty an initial-boundary value problem like (5.22)—(5.27). The main
difference here is that, in general, the weak limit w of the sequence {w*} differs from u.
More precisely, the following statement is true.

Lemma 5.11 Let uy < oo. Then the strong and weak limits u, 0, w/, ps and ps of the
sequences {w*}, {0°}, {y*w}, {p;} and {p{} satisfy the initial-boundary value problem in the
domain Qr, consisting of the balance of momentum equation

2

0°u ov 4 "
T0ps(1 —m)z5 +70pr 7 + Vpr + ps + fod) — pF
= div(AA] : D(x,u) + B divu + B (BI + ps)). (5.34)

where v = 0w/ /0t and A, By and B are the same as in (5.22), the continuity equation
(5.24) for the solid component and continuity equation
1 ops  10p,

. 0
P n0§+dlvv=(m—1)dlva—l: (5.35)



for the liquid component, the relation
du t
v=mg + [ Bi(t—r1) h(x,1)dr, (5.36)
0

1 u
h=-V (zpf + ﬁ0f9> +psF — 0Pf AT

in the case of 79 > 0 and uy > 0, or Darcy’s law in the form
du 1 1

in the case of o = 0 or, finally, the balance of momentum equation for the liquid component
in the form

v GR 1
WPrE = TopyBs - el +(ml—1Bs) | —V b + Bos0 ) + psF (5.38)

in the case of uy = 0 for the liquid component.
The problem is supplemented by boundary and initial conditions (5.26) and (5.27) for
displacement u of the rigid component and by the initial and boundary conditions

To(v(x,0) —mvo(x)) =0, x€Q, (5.39)

vix,7) n(x)=0,xe8, t>0 (5.40)

Jor the velocity v of the liquid component. In (5.36)—(5.40) n(x) is the unit normal vector
to S at a point x € S, and matrix Bi(t), symmetric strictly positively defined matrices B,
and (mll — Bs) are defined below by formulas (5.42), (5.44) and (5.46).

Proof The boundary condition (5.40) follows from (5.7), the equation
w=w +(1—mu,

and the homogeneous boundary condition for u.

The same equation and (5.6) imply (5.36). The homogenized equation for balance of
momentum (5.34) is derived exactly as before. Therefore we omit the proofs now and
focus only on the derivation of the homogenized equation for the balance of momentum
for the liquid velocity v = dw/ /ot.

(a) Let 79 > 0 and p; > 0. To solve the system of microscopic equations (5.8), (5.15)
and (5.16), provided with initial data (5.19), first of all we represent the solutions V(x,1,y)
and R(x,1,y) by

;3
Vix ) = S0+ [ 30 Vit = oier hix. o)
i=1



t 3
Rix.ty) = [ 30 Rifv.=o)es s, ).
i=1

in which functions Vi (y,t) and Ri(y,t) are defined by the periodic initial-boundary value
problem

I

Vv, . . o
TOPfa—TO —wAVy+VRy =0,  div,Vi=0, ye¥,t>0;
V=0, yey. ©>0; (5.41)

; 1
l = —e, Y..
Vi 0= e ye v,
In (5.41) ¢; is the standard Cartesian basis vector. Therefore

3

Bi(1)=>Y_ (Vi)y, () ® e (5.42)

i=1

Note that the differential equations in (5.41) are understood in the sense of distributions.
Compatibility conditions do not apply and the time derivative of the function V} at t = 0
on the boundary vy is unbounded.

(b) If 7o = 0 and y; > 0, then the solution of the system of microscopic equations (5.8),
(5.17) and (5.18) is given by the formula

V= % + iIBg(y) : (—V(%pf +ﬁ0f0> +pfF>,
in which
3
Bi(y) =) Vi) ®e
=1
and the functions Vi are defined by the periodic-boundary value problem

—AV{+ VR =¢, div,Vi=0, yeY;; Vi=0 yey. (5.43)

Thus

B, = (B}((¥),,- (5.44)
The matrix B, is symmetric and strictly positively defined [14, Chap. 8].
(c) If 4y = 0 then in the process of solving the system (5.8), (5.17) and (5.18) we firstly
find the pressure R(x,t,y) through solving the Neumann problem for Laplace’s equation
for Y; in the form

3
R(x,ty) = Z Ri(y)ei - h(x, 1),
i=1
where Ri(y) is the solution of the problem

NyRy =0, ye Yy, VyRi'm=n-¢, ye<y. (5.45)



Formula (5.38) appears as the result of integration of (5.17) over the domain Y; and

3
B; = > (VR(Y))y, ® e (5.46)

i=1

where the matrix B = (mll — B;) is symmetric and positive definite. In fact, let R =
Zle R;¢; for any unit vector £, Then

(B-¢) &= (&= VRP)y, > 0.

On the strength of our assumptions on the geometry of pattern ‘solid’ cell Y, problems
(5.41) and (5.43) have unique solutions and problems (5.45) have unique solutions up to
arbitrary constants. ]

We complete the proof of theorem with

Lemma 5.12 [For almost all (x,t) € Qr strong and weak limits 0, py and ps satisfy the
homogenized heat equation

Gy — LD = div(B’ - v9), (5.47)

and initial and boundary conditions
8(x,0) = Oy(x), x € Q, 8(x,t)=0, xe8,t>0. (5.48)
The symmetric and strictly positively defined matrix B is given below by formula (5.49).
Proof The homogenized heat equation (5.47) is a macroscopic equation (5.21), where the

expression (»x,V,0)y is substituted by IBf - V6. The last expression is defined by a solution
of the microscopic heat equation (5.20) in the form

: 20
O(x.t.y) =)  Oly)z—(x.1).
i=1

where @;, i = 1,2,3, are periodic solutions of the problems
div,(50(V,0;+¢;)) = 0

in the domain Y. Thus

3
B’ = %I+ B, Bj=> V,(0)y e (5.49)
i=1



6 Proof of Theorem 3
6.1 Weak and two-scale limits of sequences of displacement and pressures

On the strength of Theorems 1 and 4 we conclude that the sequences {y°w’} and {pj}
two-scale converge to x(y)W(x,t,y) and ps(x, t)y(y) and weakly converge in L*(Qr) to w/
and py, respectively, and the sequence {6¢} converges strongly in L*(Qr) and weakly in
L*(0, T; W3 (Q)) to the function 6. A sequence {ué(x, 1)}, where ué(x, ) is an extension of
wé(x,t) from the domain Q¢ into domain Q, strongly converges in L?(Q7) and weakly in
L%((0, T); Wi(Q)) to zero.

6.2 Homogenized equations

As in the proof of Theorem 2, we construct a closed system of equations for the velocity
v = 0w/ /3t in the liquid component, the pressure p; and for the temperature 6.

(a) Let 79 > 0 and py > 0. Then the the system of microscopic equations (5.8), (5.15)
and (5.16), provided with initial data (5.19), has the form

s OV Ly LV : |
v (0) r AV —V,R+1z, div,V =0, yeY;; (6.1)
V(y.t)=0, yey,t>0; V(y,0) = vo(x), ye€E Yy, (6.2)

where
S (v(l 5 0>+ F>
T @ A\ T ) )
To solve this problem (6.1), (6.2) we introduce a new time © = 7(x, t) by the formula

3 _ (o)

oy P 7(x,0) = 0.

Then the problem (6.1), (6.2) reduces to the previously solved problem (5.8), (5.15), (5.16)
and (5.19) with v(6) = 1 for the function

- du
V(X> T, Y) = V(X> A Y) - a(’g t)

and
Vi) =30 = [ Bile— &) aix. £)dc
where
i(x,r(x, t)) = 7(x, t).
After that the liquid velocity is defined through the identity

V(X, 1) = mvo(x) + ¥(X, 7(X, t)).

The next step is a derivation of the homogenized heat equation. The only difference here



compared with the previous case is in the term
(1 = 7 (x))rgs div w,

which converges strongly in L?(Q7) to zero as e \ 0. Therefore

520 oy Oy
Pat p. ot

= div(B? - v8).
Finally, to get a continuity equation we rewrite (2.1) in the form
1 . .
“—pfc + divw® = (1 — ¢*)divd,
14

which implies
i aﬁ +divv = 0.
p» Ot
The problem is endowed with corresponding boundary and initial conditions.
(b) For the case 79 = 0 and p; > 0 we just repeat the proof of Theorem 2. Taking into
account the equality u = 0 we get

1 1
v=—DB;y" <_V<Epf +ﬁ0f9> +,0fF>>

H
10
— P14 diyy = 0,
p» Ot
N o0 ﬁOf apf T g
U PRI div(B” - V8).

The problem is supplemented with homogeneous boundary conditions for the velocity v
and temperature 0, homogeneous initial condition for the pressure p; and initial conditions
for the temperature.

(c) Finally, if 1 = 0, we again repeat the proof of Theorem 2 taking into account the
equality u = 0.

7 Conclusions

In the present publication we have derived completely new systems of anisothermic liquid
filtration and anisothermic acoustic equations and showed (Theorem 2) that for the case
(I (o = 0, 0 < Ay < oo) the limiting regime is a two-velocity continuum. This is
described by the Biot system of equations of poro-elasticity coupled with a corresponding
heat equation (0 < py < o0, 79 = 0) or a similar system, consisting of anisotropic Lamé
equations for a thermoelastic solid coupled with acoustic equations for the thermofluid
(11 = 0), or a one-velocity continuum, described by anisotropic Lam’e system of equations
coupled with a corresponding heat equation (u; = oo, or isolated pores for any criteria).
Thus, for some situations a one-velocity continuum before homogenization becomes a
two-velocity continuum after homogenization. It appears as a result of the different



smoothness of the solution in the solid and in the liquid components:
/ o, (e))°|VW[* dx < Cy, / ai(e)(1 — )| Vw?|?) dx < Co,
Q Q

where Cy is a constant independent of the small parameter & To preserve the best
properties of the solution we must use the well-known extension lemma [1, 6] and extend
the solution from the solid part to the liquid one. At this stage the condition on yy,
becomes crucial. Namely, if py = 0 and 4y < o0, then the limiting (homogenized) system
describes a two-velocity continuum if 41 < o0 and a one-velocity continuum if yy = co. The
last case occurs because the sequence {w*} two-scale converges to a function independent
of the fast variable. This statement easily follows from Nguetseng’s theorem.

For the case (II) (Ag = o0, 0 < py < o0) all situations are covered by Theorem 3. The
limiting regimes here are described by Darcy’s system of equations of filtration of slightly
compressible viscous thermofluid (0 < y; < o0 and 79 = 0), or two different systems
of acoustic equations (0 < py < oo and 79 > 0, or ;y = 0 and 79 > 0) for the liquid
component, coupled with a corresponding heat equation.

The presence of a non-linear viscosity v(8) essentially changes the form of the homo-
genized equations if 7o > 0 but does not change the expected form if 7o = 0. To simplify
the paper we show it just for case (1I).

Finally note that in practice to solve a real physical problem in, for example, non-
isothermal filtration, one doesn’t want to have to carry out a limiting procedure but
instead has to find a simple and trustable mathematical model describing a process.
But there is only an exact mathematical model (1.1)-(1.10) (sufficiently trustable), given
physical constants (densities, viscosities, etc.), the characteristic size L of the physical
domain in consideration and the characteristic time 7 of the physical process. The small
parameter ¢ and dimensionless quantities o, o, op,... are functions of these. Changing
the values of L and 7 within reasonable limits one may find some rules for the behaviour
of the dimensionless quantities as the small parameter tends to zero. All possible limits of
these quantities are described by conditions on ug, Ao, t1,... and as we have mentioned
above, each homogenized system corresponds to the given combination of these. Thus,
for a given physical situation there exists some combination of dimensionless criteria,
that would suggest the choice of the form of the homogenized system for the exact
mathematical model. Therefore the finding of all possible homogenized systems is very
important both from mathematical and practical points of view.
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