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Abstract—An inverse problem of the reconstruction of the right-hand side of the Euler—Darboux equa-
tion is studied. This problem is equivalent to the Volterra integral equation of the third kind with the oper-
ator of multiplication by a smooth nonincreasing function. Numerical solution of this problem is con-
structed using an integral representation of the solution of the inverse problem, the regularization
method, and the method of quadratures. The convergence and stability of the numerical method is
proved.
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The inverse problem for the Euler—Darboux equation arising in the theory of degenerating equations was
investigated in [1]. In [2, 3], the regularizability of a similar problem in a more general setting was proved.
Equivalency of these inverse problems to the Volterra integral equations of the third kind was proved. A
numerical solution to the integral Volterra equation of the third kind was first constructed in [4] based on the
regularized equation. In this paper, we consider the numerical solution of the inverse problem of the recon-
struction of the right-hand side of the Euler—Darboux equation. Here, the integral representation of a solu-

tion to the inverse problem plays an important role.

1. STATEMENT OF THE PROBLEM

Let U be the space of functions u(x, y) from the class C(Q) N C-}(Q), where Q = {0 <x <y < 1}, sat-

isfying the boundary conditions

u(0,y) = w(y), u(x 1) = ¢(x),
and F be the space of the continuous functions f{x, y) that are represented as

a_ Bo-1

£ y) = -Bo(1-0" v -y -0 K, 1) v(x),

where
B, = 1+PB,—By 1<Py<Bo<2<0, L, = 9/9x9y—P,(y—x) '9/9y.
We want to find a pair (u, f), u € U, fe F such that

(Lou)(x,y) = f(x 2(y-x)",

provided that the following condition is satisfied for the given functions.

Condition 1. y(3) € C>(0 <y < 1), y(0)=0, o(x) € C' (0<x< 1), and K(y, x) € C-(Q).

ey
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The solution to problem (1), (2) can be represented (see [1]) in the integral form

1 X
u(x,y) = 0(x)- [n"(n —x)ﬁl[w'(n) - (1=m)"v(n)dn - [K(n, t)V(t)dt]dn
y 0

-Ja-mm” -0 Mvman.

Taking into account that 1 € U if and only if the function v(x) is a solution to the Volterra integral equa-
tion of the third kind (see [1, 3])

(1-x)"v(x)+ JK(x, Hv(H)de = y'(x), 3)
the representation for u(x, y) can be written as

u(x.y) = 0(x) - j”—“ 0

B

n
v(n)dn - j BJK(n, Hv(ididn, )

Recall some useful results from [4]. Let I be the 1dent1ty operator,

(Av)(x) = (1-x)"v(x),

(Lv)(x) = jL(x, Hv(dt, (Gv)(x) = jG(t)v(z)dz, G(t) = Co(1 -0+ K(1, 1),

g(x) = y(x)+ Coy(x), L(x,t) = K(t,1)-K(x, l)—COJK(S, Hds, 0<C, = const,

and let the following condition be fulfilled.
Condition 2. For positive 6, < 1 and C,, the inequalities

0<d, <G(x), 0<0,G(x)—a(l-x)""

hold.
If Condition 2 is satisfied, then the system of integral equations
! B M
ue(x,y) = 0(x) = | [—”) ve(n)-—— [K(n. t)vg(t)dt]dn, 5)
m ) Mm-x)
(el +A)ve(x) +(Gve)(x) = (Lve)(x) +g(x) (6)

with the small parameter € € (0, 1) has a unique solution that converges uniformly as € — 0 to the solution
of system (3), (4).
Using the resolvent of the kernel (—G(f)/[e + p(£)]), we write Eq. (6) as

Ve(X) = (He[Lv.])(x)+ (Heg)(x), (M

where

(Heg)(x) = H%p(x)[ We(x, 0)g(x) - jwu t)G(t)g([) 8x) ]

e+ p(1)
) ®)
W.(x, t) = exp[—j8 f;s()s)ds].




2. NUMERICAL SOLUTION
Define the uniform grid @, , = @, X @, on Q such that
={y,=tn,n=0,1,..., Ny, TN, =1},
o, = {x;=ih,i=0,1,...,N,hN; =1}, N, = kN,

and 1 < ky is a natural number. Denote by C; , and C,, the spaces of the grid functions u; , = u(x;, y,) and v, =
v(x;), respectively, with the norms

leti e = maxu,|. [V, = max |v[.
0<i<n,0<n<N, 0<i<N,;

Setting m,, = kgm, we approximate the integrals in (5) as

No
B, -1 0 ymrz mh
uin = ¢i_ z ym [Ti,m(l_ym)ave,m B1 o, z Km jvS j]’ (9)
m=n+1 (ym j=i+1
where
1 1-0, 1- oco .
Tim = ——[(Vu— X)) (Vo1 —X;) i=12,....,.n, m=n+1,...,N,,
’ 1-o
Tom = ﬁ[(ym—xi)”u(ym x) P =2 n m=na+l . N,
—P1

Approximate the integrals in (7) using, for example, the right rectangular quadrature formula. Then, we
obtain the system of linear algebraic equations

Ve, = — BN Lvei—-hY Liowver+g—g |+ ¥ Y L v + i),
e, e+ (1_ X)JZII [2_:1 Gk Ve k— Z kVert&— ] 1[% ,iVe, g] (10)
i=12,...,.n, n=1,2,...,N,,

where L; , = L(x;, x), G; = G(x)), v ;= ve(x), g5 = g(x), x;=jh, j=1,2, .
‘ L G,
Wil = L ~exp —hz—a )
e+(l-x)) S:je+(1—xs)

L(x;s %) = = K(x, %) + K (0 ) = Coh Y K(x,, %),

s=k+1

eh G,—o(l-x)""
Vi —8+1e p[ hz .

o e+(1—xs)

Since

EORENSAR

s=k+1 s=1

for k=1, we have

szkvek = _Z(sz_Kkk)Vsk_COZE z Kskjvsk = szkvek

= k=1 k=1\s=k+1



Thus (10) becomes

i1
e h
Ve, = ——ZWS G[hZL]kvgk hZlev£k+gj -]+‘Pi,1[h2Li,jv&j+gi], (11)

e+ (1- x)j_1 io1

i=1,2,...,n

Below, to prove the convergence of the solution of system (9), (10) to the exact solution of inverse prob-
lem (1), (2), we will need the bound on the error of approximating the integrals in (5) by rule (9).

Introduce the notation

1 N,
T h m zm
o= [ d”Bij, dutna, Bie Y e
(n X) m= n+1(ym i j=i+l

Lemma 1. Let the functions K(x, y) and v(x) be continuously differentiable. Then, for any 1 < 3, <2,
there exists a number 0 < 0 < 1 such that 0 <Ay =1- B, + 0 < 1 and the inequality |I, , — Iﬁ’,fl <O+

7 holds.

Proof. Since o < 3;, we have A, < 1. Moreover, for the functions z,(s) = 3; and z,(s) = 1 + s, for any 1 <
B, <2, there exists an interval (s;, s,) < (0, 1) such that z,(s) < z,(s) for any s € (s, s,). Therefore, for 1 <
B, <2, there exists a number 0 < o, < 1 such that 0 <A, and, for x; <1 <y, the inequality [Y(x;, y,,, ] <
o= bB1 1+ag—By
+ ~~+()7—X) ”Y(x’y?n)z4(x’y,n)=n_y,
and z,(x, y, ) = (M — x)Bl (- x)Bl ™ Taking into account this fact, we estimate the difference I, -
1% We have

Nom—x)" """ holds, where Y(x,y, )= -»' "

No Im 1 B, B, n
=y J . ymﬁr%_ Ym BF%J|K(n,z)||V(z)|dzdn
m:n+1ym71(n_ i) (n_xi) (ym_xi) X
Ny Ym [31 n

1 n
+ - 5 | 1K(n, v (D)ldrdn
m:zmymjlm—xi) "(m-x )‘31 J

< 7 Yy “n)n - )t
m m x
<Tyr, z J [ B o, o B, 1+0,-B,
m= n+1y (n X) (ym_xi) [(ym_xi) + "+(n_xi) ]
o —By 1+0o-B .
+(N—x; BIT]<FOTO(NOT +B17);
No Ym 1
yi L+0o-By
<> 00 —MITI( = x) + Tyldn < re( Tyt + Tyr 1),

m=n+ly (n_ ) (ym_x)

where |v(x)| £ ry = const,

T, = max|K(x,1)|, T, = D ={0<t<x<1}.
D



Thus,

‘Ii,n_lff’;: S‘Izl,n +‘112,n ‘Izn zn = ‘Izl,n +‘112,n

Ny Ym d [31 mg Xj

Vi
+ > [ o > [ KO DV — K x)vxrldr < My + M,
m=n+1y (n X) (ym i) j= z+1x?1
where
0
M, = max a_l(K(y’ M, = 1T+ To(By+ No+ 1)].
Q

The lemma is proved.

The stability of the solution to system (10) with respect to the right-hand side, which is measured in
C'[0, 1] metric, is proved below.

Lemma 2. Under Conditions 1 and 2, the solution to system (11) satisfies the bound
[Ve.dln < (Qo+ Q)Ms. where Qy = maxiy'(x)l., Q1 = maxly"(x),

and M5 is a constant independent of h and e.
Proof. Using Condition 1, we obtain

|Li,k_Lj,k| S |Ki,k_Kj,k| + Coh z |Kj,k| S (Tl + CoTo)(hl—h]),

m=j+1

Lid SIK; o= Kid + Col Y, K4 < (T) + CoTo)(hi—hk).
m=k+1
Therefore, we have

i-1

j-1 i-1 j-1
thj,kve,k_thi,kve,k Sh2|Lj,k_Li,k||V£,k| +h2|Li,k||Vs,k|
k=1 k=1 k=1

k=1
i-1

<2(Ty+ CoTo)(hi— hj)h Y. [ve .
k=1

Since (1 - x)* < (1 —x;)* for all j < k, we have, taking into account Condition 2,
hi—hj : 1 - G
SIS REPYN S Nl -
e+(l-x)) k:je+(1—xk) k:j8+(1—xk)

Based on the estimates given above, we obtain from (11)

j-1 i-1
z WS hG [thj,ng,k_thi,kve,k+gj_gi]
k=1 k=1

j=1

e+(1—x)

< —z Wi G [2T2hz |Ved + 01+ COQOJ(hz — hj)

e+(1-x)" ic1

e+(1 x)]

ol =18+(1—xj)

i-1 i
T:h hi — hj
< 2T2h2|ve’k| +0,+C,0, 3 az 1-nj hz
e+(l-x) ;



i-1 n
_ —0,v
S[2T2h2|ve,k| +Q1+C0Q0]T3(d192) 226 )

k=1 v=0

where

G
W=hnY ———— T,=T,+CTy Ts=2max|G(x)l/e’, 6,=1-9,.
e+ (1-x) [0,1]

s=1

The expression

v=0

is majorized by the convergent series z:’: 0 eielv . Therefore, S, < +oo. Similarly, using Conditions 1 and 2,
we obtain the following inequality for the second term in (11):

i-1
‘Pi’f’[hZLi, Vet gi]

j=1

i—-1
1
< H—l[nhz |ve |+ (1 + CO)QOJ.
ji=1
USlIlg the IlOtaUOIl T4 = T2(2(d192)72S0T3 + 1), d2 = (1 + Co)[l + (d192)72S0T3], aIld SO = Sup|Su|, we ObtalIl
from system (11) that

i—-1

Ve | ST |ve | + (01 + Qo)ds.

ji=1

This immediately (see [5, p. 21]) entails the bound
”Ve,i”h S[(Q: + Qp)dy]exp(Ts),

which proves the lemma.
The following lemma can be proved in a similar way.
Lemma 3. If Conditions 1, 2 are fulfilled and v(x) € C'[0, 11, then the bound

|l < 0, (12)

holds, where
H:[vi] = _LZWSJLG-(VJ-— vi)+‘1’i’lhvi,

o L
e+(1-x;) i1

vl <ry, VX< r, o7 = const, Qs = d; TaS,r +2r,.
0 1 01 3 1 32001

Lemmas 1 and 2 imply the stability of the solution of difference scheme (9), (10) with respect to the
boundary functions if ¢(x) and y(y) are measured in the norms of the spaces C[0, 1] and C?[0, 1], respec-
tively.

Lemma 4. If Conditions 1 and 2 hold, then, for 6,=1- 26, € = O(h®), and ¢ >0, it holds that
* o-1 i o-1

- G.+o(l-
J'G(s) + ol sa) ds_hz ;0 x/;)i1
e+(1-9) e+ (1-x)

<Oh™). (13)

k=1
Proof. In view of Conditions 1 and 2, we have

x i

J‘G(S)+0c(1 _sa)‘“ds_thHoc(l —x,;)i";1
e+ (1-s) e+ (1-x;)

k=1



<i J Gs)+oa(l-9"" Gra(l-x)" s
S U ey e+(1—x)""

G+ o —

<G )+ o(o—1)] —
e+(l-x) (e+(1-x)")

and for € = O(h°), this yields (13). The lemma is proved.

Theorem 1. Let Conditions 1 and 2 be fulfilled and € = O(h®). Then, for any 1 < By < 2, there exists a
number 0 <oy < 1 such that 0 <k, =1-B, + o < 1 and the solution to system (9), (10) uniformly converges
to the exact solution to system (3), (4) for all 0 <6 £ 1/2 as h — 0 and T — 0. Moreover, the following
bound holds:

€
Hui,n u;,

rh—O(h +T )

Proof. Equation (3) is equivalent (see [3]) to the equation Av + Gv = Lv + g that follows from (6) for
g = (. The last equation is reduced to

v(x) = (H[Lv])(x)—e(H:v)(x) + (Heg)(X), (14)

where H, is defined by formula (8). Setting x = x;in (14) and x = x;, y = y,, in (4) and using the right rectan-
gular quadrature formula for integrals, we obtain the system of equations

Ny
ui,n = (bi_ z [T?,m(l_ym)avm-i'( m B1 0 z Km] ]] i,ns (15)
m=n+1 Vi — j=i+1

S ST A,

e+(1-x)" ic1

(16)
i-1
+‘Pf,’1h[h2Li,jvj+gi—8vi]+Rl-, i=1,2,...,n, n=12 .. N,
ji=1
where Rl-l, » and R; are the sums of the residual terms of the integrals in (4) and (14). Define the error vectors

T, h € h .
&' = Ml',n_u' nS,i = V&i_vi, 1 = 1, 2,..., n, n = 1, 2,...,N0.

i,n i,n®

Then, it follows from (9), (11) and (15), (16) that

NO
h hym i,m
SR [r?,mu—ym)“ngw R 2 K, n] an
m=n+1 (ym j=i+1
j-1 i—
h
nZ,,- = ZWS 'G [thj,an,k—hz Li,kne,k_e(vj_vi)]
8+(1 k=1 k=1
1 (18)
+\Pi’f[thi,jn’;k_evi]—Ri, i=12..n n=12 ..N,.
j=1
Repeating the calculations from the proof of Lemma 2 for (17), (18), we obtain the inequalities
NO
ym zm
< Y [nm(l ot |+ ST T S ]
m=n+1l (ym j=i+1 (19)

i1
\n’!, i‘ = T4hz \nﬁ,k\ + E‘H}gvi‘ +

k=1




Applying the difference analogue of the Gronwall-Bellmann lemma (see [5, pp. 20, 21]) to the last ine-
quality, we have

‘nﬁ,;\ < (E‘Hgvi‘ +|R|)exp(Ty,);
consequently, using bound (12), we obtain
Hnﬁ,iHhS(Qaﬁ IR{|;)exp(Ty). 20)

Now, we obtain a bound on the residual term R,. From Condition 1, we have

e+(1-x

IR, = —z j WSG(Z)EJL(t S)V(S)dS—JL(x],S)V(S)dS]

z ]—1
i

1 t

8+(1—x)]_1 e+(1 e+ (1-1) e+ (1-x;)

R,,| = z j Wi W, J)G(Z)UL(xj, S)V(S)dS—JL(xi,S)v(s)dsjdt
0

iy e+ (1-x)"

h

< 67,T,ryh ,
e+ (1-x)"

e+ (1 —x)

i e e h % i
IR, = z (Wi,j—Wi,j)(i(l)[J'L(xj,s)v(s)ds—JL(xi, S)v(s)dsjdt
e+ (1-x;) o 5

J= 1xjfl

2T27’0 le ](X X) GXPEJL)&CZS—Z}Z—GI{OC ,
X - J -k

e+(1 ]_1 e+ (1-s) eo et (1 —x)
where
| * |
G(s)
d, = su e, ds, = su e v
’ nZ%ZZ) i J-8+(1—s)05 ) nzpovzz‘z)

According to Lemma 4, the expression

o G(s) B Gy
Rio Je+(1—s)ads hz

et (1-x)”

is bounded if € = O(h°) and 0 < ¢ < 1/2. Then, Theorem 1 implies |1 — exp(R; o) < ds = const. Thus,

h

-1
R, 3| <dy T Tsrodyds——,
e+(1-x)

e+(1-x)"

R || = z j WG - G]UL(x,, S)V(S)dS—JL(xi,S)v(s)dsjdt
0

]—1
2
2T,

e+(1 x)"

.
e+(1-x)"

zwe (x;— x)j[G(z) G ldt<d, ' T,Tsryd,

=1
J xi



*j j
R < z J WG [jL(xj, )V(s)ds—hY L; v,
n 0 k=1

e+(1 x)" iis

h

JL(xl, $)v(s)ds —h z L v, ]dt <d; T6T3d4m,

k=1

where

Ts = max|G'(x)|, Ts = max
[0,1] Q

2wx nvin)|

Using LLemma 4 and the condition 0 < ¢ < 1/2, we obtain

R, = (\Pil—‘Pi’f)U L(x, s)v(t)dz+gi] <TH¥E - i

I
<d)'T,¥" h§ Teh+ Ty
L 19[ £+ (1 - x)]( e 98+(1—xi)a)

< (d191€)71T7(T8h + Tg%)’
e+(1-x;)

where 0 <6, <1, Tg=0(l —o) + T, To =T + O,

i

‘ G,
‘Pi,lh,e = GXP[—helz—’a], JL(xi, s)v(ndt+ g <T5,
et (1-x)) ;

IR, | = [JL(xl, Dv(tdt - hz Lv ] <T.hi2.

j=1

Since the residual term R, = 2 R. ., we have from the bounds obtained above that

i,j*
||Rl||h = Qsh + QGh/e,

where Qs and J, are positive numbers independent of € and 4. Then, (20) implies

I 1= (0se + s+ 2oy Jexp(r.), e

Thus, we have obtained a bound that is typical in the regularization theory (see [6, p. 12]). This bound
requires that the small parameter be coordinated with the discretization step. It follows from (21) that if we
take &€ = O(h°), then the difference scheme based on (9), (10) converges for all 0 < ¢ < 1/2. Moreover, we
can find the relation between € and 7 that minimizes the error of the approximate solution. Define € as the

minimum of the right-hand side of (21). We obtain 6 = /Qsh/Q5.
Using Lemma 1 and bound (21), we obtain from (19)

= [&f
Th — i,n

ui,n - ui, n

<A+ THNE ]+ 0+ Ty <o+ ™).

The theorem is proved.



Example. Let f(x, ) = —B,(1 -7y v(3) =9y (=)™ " (), 0(x) = 1 + 23/30, and y(y) = /3 +
3y3/5 — ¥5/6. Then (3) becomes

(1-x)v(x) +9jv(z)dz = 3t 22)
0

The exact solution to integral equation (22) is v(x) = x> Then,

1 B -1
u(x,y) = 2_3+x3—3J.—n — (1112(1—n)3+n3+n2x+nx2)dn,
30 (n-x™ "3
¥y

Calculations by formulas (9), (11) give the error || ui n = Ui lle £ 0.13636 for h =T =0.01 and the error
Nt — il < 0.0857 for i =T = 0.005.
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