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1. THE MAIN FADDEEV–MARCHENKO 
THEOREM

Consider the inverse Sturm–Liouville problem

(1)

on the entire axis in classical setting, where

(2)

Beginning in the middle of the past century, this
problem has been considered by many authors (see
monographs [1–3], which include an extensive bibli�
ography).

As is well known [2], under condition (2), the dis�
crete spectrum of the initial problem in the class of
functions vanishing at infinity is at most finite; all
points in the spectrum are simple and lie on the nega�
tive half�axis. Taking them into account involves no
difficulties both when applying the classical method
for solving the inverse problem and when using the
approach proposed in this paper. Thus, in what fol�
lows, we assume that the coefficient q(x) in Eq. (1) is
such that the problem has no discrete spectrum.

Let us describe the classical approach of
I.M. Gel’fand, B.M. Levitan, L.D. Faddeev, and
V.A. Marchenko to solving this problem. Consider the
Jost functions fj(x, k), j = 1, 2, as solutions of the
Sturm–Liouville equation with given asymptotic
behavior at infinity:

as k → ±∞, where ±1 = (–1)j – 1. They are determined

uniquely; in particular, fj(x, –k) = . For a fixed

y''– q x( )y+ k2y, x �∈=

q C �( ), 1 x+( ) q x( ) xd

�

∫ ∞.<∈

fj x k,( ) e ikx± o 1( ), f j' x k,( )+ ike ikx±± o 1( )+= =

fj x k,( )

real number k ≠ 0, the pairs of functions {fj(x, k),

} form two fundamental systems of solutions
and are, therefore, related by

(3)

with some coefficients a(k) and b(k). The functions fj
can be represented as [2]

(4)

with certain real kernels Aj(x, t); moreover, the inte�
grals converge absolutely. Properties of the coefficients
a and b were studied in detail in [2]; we collect them in
the in the following proposition.

Lemma 1. The following relations hold:

An integral representation of these functions is also
known [3]; this is

(5)

where A(t) and B(t) are integrable functions, which are
expressed in a certain way in terms of the potential q
and the kernel Aj(x, t).

According to (4), for each fixed x, the functions
fj(x, k) admit an analytic continuation with respect to

fj x k,( )

f1 x k,( ) b k( )f2 x k,( ) a k( )f2 x k,( )+=

f1 x k,( ) eikx A1 x t,( )eikt t,d

x

∞

∫+=

f2 x k,( ) e ikx– A2 x t,( )e ikt– td

∞–

x

∫+=

a k–( ) a k( ), b k–( ) b k( ),= =

a k( ) 2 1 b k( ) 2
,+=

a k( ) 1 O k 1–( ), b k( )+ O k 1–( ) as k ∞,→= =

k a k( ) b k( )+[ ]
k ∞→
lim 0.=

2ika k( ) 2ik q t( ) td

∞–

∞

∫– A t( )eikt t,d

0

∞

∫+=

2ikb k( ) B t( )eikt t,d

∞–

∞

∫=
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the parameter k to the upper half�plane ζ = k + il,
l > 0; for the continued functions, we use the same
notation. By virtue of (3), the function a is the Wron�
skian of f1 and f2; therefore, it can be analytically con�
tinued to the upper half�plane as well, and the product
ζa(ζ) is continuous in the upper half�plane. This can
also seen from representation (5). The above assump�
tion that the Sturm–Liouville equation has no spec�
trum is equivalent to the condition that a(ζ) ≠ 0 if
Imζ > 0. Taking into account Lemma 1, we directly
obtain the following property of this function.

Lemma 2. In the upper half�plane, the function a(ζ)
can be represented as

moreover, the product ζa(ζ) is continuous in the closed
upper half�plane.

The kernels Aj in representation (4) are solutions of
the Gel’fand–Levitan–Marchenko integral equations

(6)

Under the above assumption about the spectrum, the
functions Fj are related to a and b by

(7)

The classical approach to solving the inverse prob�
lem under consideration, which was developed by
Faddeev, Gel’fand, Levitan, and Marchenko, is as fol�
lows.

Main theorem. Suppose given continuous (at k ≠ 0)
function a(k) and b(k) which satisfy the assumptions of
Lemmas 1 and 2. Suppose also that functions Fj are con�
tinuous and differentiable, and the integrals

are finite for any x ∈ �.
Then the integral equations (6) are uniquely solvable

with respect to Aj, and the functions fj(x, k) determined

a ζ( ) 1
2πi
������ 1 r t( ) 2–( )ln

t ζ–
��������������������������� td

�

∫–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp=

r t( ) b t( )
a t( )
��������,=

A1 x y,( ) F1 x y+( ) A1 x t,( )F1 t y+( ) td

x

∞

∫+ + 0,=

y x,≥

A2 x y,( ) F2 x y+( ) A2 x t,( )F2 t y+( ) td

∞–

x

∫+ + 0,=

x y.≥

Fj x( ) 1
2π
����� b k±( )

a k( )
�����������e ikx+− k, 1±d

�

∫± 1–( )j
.= =

F1 t( ) 1 t+( ) F1' t( )+[ ] t,d

x

∞

∫

F2 t( ) 1 t+( ) F2' t( )+[ ] td

∞–

x

∫

from the Aj according to (4) satisfy the Sturm–Liouville
equation with coefficient

2. THE REFLECTION COEFFICIENT r = 

Levitan noticed in [4] that the conditions in the
main theorem can essentially be reformulated with
respect to the function r(t), as follows from Lemma 2.
Moreover, the function q can be determined by using a
function F2 whose expression (7) involves only r(k).
According to Lemma 1, the function r(k) is strictly less
than 1 in absolute value for k ≠ 0. Moreover, the first
two relations in the lemma can be extended to r(k).
Thus, we can write

(8)
In particular, if the limit r(0) = limr(k) as k  0 exists,
then it is real.

The behavior of r(k) as k  0 is easy to describe
by using the integral representations of the functions a
and b. Let us write them in the forms 2ika(k) = 2ik +

(k) and 2ikb(k) = (k) with the corresponding con�

tinuous functions  and . Then, according to

Lemma 1, we have (0) + (0) = 0, and, in the same
notation,

If (0) ≠ 0, then (0) is nonzero as well and, hence,
the limit r(0) = limr(k) as k  0 exists and equals

If (0) = 0, then by virtue of the same considerations,
we have (0) = 0, and the behavior of r(k) as k  0
may be arbitrary; its character has not been completely
clarified so far. Apparently, it is for this reason that, in
[2], the coefficients q are subjected to the more restric�
tive constraint

Under this constraint, the last condition in Lemma 1
is replaced by a(k) + b(k) = O(1).

The behavior of the function a(ζ) defined in the
upper half�plane D+ = {Imζ > 0} by Lemma 2 was
described under natural assumptions about r(k) by
Levitan in [4]. His result can be reformulated as fol�
lows.

Theorem (Levitan). Suppose that a function
r(k) ∈ C(�) with properties (8) satisfies the Hölder con�
dition outside any neighborhood of zero and r(k) = O(k–1)
as k  ∞. Suppose also that the function f0(k) = ln[1 –

q x( ) 2 A1 x x,( )[ ]'– 2 A2 x x,( )[ ]'.= =

b
a
��

r k–( ) r k( ), r k( ) 1, k 0.≠<=

ã b̃

ã b̃

ã b̃

r k( ) b̃ k( )
2ik ã k( )+
��������������������� .=

b̃ ã

r 0( ) b̃ 0( )
ã 0( )
��������� 1.–= =

b̃
ã

1 x 2+( ) q x( ) xd

�

∫ ∞.<
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|r(k)|2] – 2σln|k|, where σ = 0 if |r(0)| < 1 and σ > 0 if
|r(0)| = 1, satisfies the Hölder condition in some neigh�
borhood of zero. Then the function

is continuous in the closed upper half�plane and satisfies
the Höder condition at ζ = 0.

This result can be somewhat strengthened. Let
H(G) denote the class of functions satisfying the
Hölder condition on a bounded set G ⊆ �. If G is

unbounded, then we consider the closure  =  ∪
{∞} of G in the metric of the Riemann sphere. In this

case, by H( ) we understand the class of functions sat�
isfying the Hölder condition with respect to this met�

ric. Equivalently, ϕ ∈ H( ) if the functions ϕ1(z) = ϕ(z)

and ϕ2(z) =  satisfy the Hölder condition on the

sets G1 = G ∩ {|z| < 2} and G2 =  ∩ {|z| < 2},

respectively. For ϕ(∞) = 0, we denote the correspond�

ing class by ( ).

As is known [5], the Cauchy�type integral

with density ϕ ∈ ( ) defines a function φ ∈ ( ),
and the boundary values φ±(t0), t0 ∈ �, of this function
satisfy the Sokhotskii–Plemelj formula

(9)

with singular Cauchy operator

In particular, this operator is invariant in the class

( ) and has the property S2ϕ = ϕ. If, in addition, its

derivative ϕ' belongs to ( ), then, differentiating by
parts, we obtain

Lemma 3. (a) Suppose that a function r(t) is twice
differentiable, its derivatives satisfy the condition r(j) ∈

( ) for j = 0, 1, 2 and |r(t)| < 1 for t ∈ �. Then the
Cauchy�type integral

h0 ζ( ) 1
2πi
������ 1 r t( ) 2–[ ]dtln

t ζ–
�������������������������������

�

∫ σ ζ,ln–=

Imζ 0>

Ĝ G

Ĝ

Ĝ

ϕ 1
z
��⎝ ⎠

⎛ ⎞

z 1
z
�� G∈

⎩ ⎭
⎨ ⎬
⎧ ⎫

H° Ĝ

φ z( ) 1
2πi
������ ϕ t( )dt

t z–
������������, z

�

∫ D±∈=

H° �̂ H° D̂±

2φ± t0( ) ϕ t0( )± Sϕ( ) t0( )+=

Sϕ( ) t0( ) 1
πi
���� ϕ t( )dt

t t0–
������������, t0

�

∫ �.∈=

H° �̂

H° �̂

φ' z( ) 1
2πi
������ ϕ t( )dt

t z–( )2
�������������

�

∫
1

2πi
������ ϕ' t( )dt

t z–
�������������

�

∫ H D̂±( ).∈= = °

H° �̂

and its derivatives h' and h'' belong to the class ( ).

(b) Suppose that r(j) ∈ ( ) for j = 0, 1, 2, |r(t)| < 1
for t ≠ 0, |r(0)| = 1, and, for some 0 < σ ≤ 1, the function
f0(t) = ln[1 – |r(t)|2] – 2σln|t| and its derivatives  and

 belong to the class H in a neighborhood of zero. Then
the function

and its derivatives  and  belong to the class

( ).
This lemma implies that, under the assumptions

of (a), the function a(ζ) = e–h(ζ) is invertible in the

class H( ) together with its derivatives a' and a''. Sim�
ilarly, under the assumption of (b), this condition is
satisfied by the function

By using Lemma 3, it is easy to determine a class of
functions r(k) for which the coefficient a defined by
the formula of Lemma 2 and b = ar satisfy all assump�
tions of the main theorem.

Theorem 1. Suppose that a function r(t) ∈ C2(�) sat�

isfies conditions (8) and (1 + |t|)r(j)(t) ∈ ( ) for j = 0,
1, 2. Suppose also that –1 ≤ r(0) < 1, and if r(0) = –1,
then the function f0(t) = ln[1 – |r(t)|2] – 2ln|t|, together
with its first and second derivatives, belongs to the class
H in a neighborhood of zero. Then the coefficients a(t) =
e–h(t) and b(t) = r(t)e–h(t), where

satisfy all assumptions of the main theorem.

3. A FUNCTION�THEORETIC APPROACH

Under the assumptions of the main theorem, the
inverse Sturm–Liouville problem is uniquely solvable,
and its solution can be obtained from the Gel’fand–
Levitan–Marchenko integral equation. However,
there is also a well�known functional�theoretic
approach to describing this solution, which is based on
the Markushevich problem for the Jost functions.

Suppose that, in accordance with the main theo�

rem, the function r =  is continuous and vanishes at

infinity, and the analytic function a(ζ) determined by r
satisfies the assumptions of Lemma 2. It is more con�

h ζ( ) 1
2πi
������ 1 r t( ) 2–[ ]dtln

t ζ–
�������������������������������

�

∫=

H° D̂+

H° �̂

f0'

f0''

h0 ζ( ) h ζ( ) σ ζ
ζ i+
���������, ζln– D+,∈=

h0' h0''

H° D̂+

D̂

a0 ζ( ) ζ
ζ i+
���������⎝ ⎠

⎛ ⎞
σ

a ζ( ).=

H° �̂

h t0( )
1 r t0( ) 2–[ ]ln

2
����������������������������� 1

2πi
������ 1 r t( ) 2–[ ]ln

t t0–
��������������������������� td

�

∫+=

b
a
��
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venient to pass from the Jost functions fj(x, k) to the
new pair of functions φj(x, k) defined by

(10)

By virtue of (4), they can be represented in the form

Obviously, for each fixed x, the functions φj(x, k) admit
an analytic continuation with respect to the parameter
k to the upper half�plane ζ = k + il, l > 0; moreover,
they are continuous and bounded in the closed upper
half�plane l ≥ 0 and tend to zero as l → ∞ uniformly
in k. Introducing the abbreviated notation

(11)

we can rewrite the relation (3) between functions (10)
in the form

Omitting the dependence on x from the notation of φj
and introducing the piecewise�analytic function

(12)

we can regard this relation as a boundary condition in
the Markushevich problem [6]:

(13)
Setting ϕ = φ+ – φ– and taking into account the
Sokhotskii–Plemelj formulas (9), we can reduce this
problem to the equivalent singular integral equation

(14)

This equation was first obtained in well�known paper
[7]; however, it has not been studied. Under the
assumptions of Theorem 1, it is natural to consider this

equation in the class ( ). It is easy to show that
multiplication by an oscillating coefficient t → eixt do
not lead beyond this class, so that, according to (11),

the function ρ(t) = ρ(x, t) belongs to ( ). Recall
that r(t) satisfies the conditions –1 ≤ r(0) < 1 and
|r(t)| < 1 for t ≠ 0. According to (11), this condition is
also satisfied by the function ρ(t) = ρ(x, t). Therefore,
if ρ(0) ≠ –1, then |ρ(t)| ≤ q < 1 for all t. In this case, the
Markushevich problem (13) is of so�called elliptic
type [6], and it is uniquely solvable for the given coef�

f1 x k,( ) eikx a k( )φ1 x k,( ) 1+[ ],=

f2 x k,( ) e ikx– φ2 x k,( ) 1+[ ].=

φ1 x k,( ) a 1– k( ) A1 x t,( )eik t x–( ) t,d

x

∞

∫=

φ2 x k,( ) A2 x t,( )eik x t–( ) t.d

∞–

x

∫=

ρ x k,( ) r k( )e 2ikx–
,=

h x k,( ) 1 a 1– k( )–[ ] ρ x k,( ),+=

φ1 x k,( ) ρ x k,( )φ2 x k,( ) φ2 x k,( ) h x k,( ),+ +=

k �.∈

φ ζ( )
φ1 ζ( ), ζ D+,∈

φ2 ζ( ), ζ D–,∈⎩
⎨
⎧

=

φ+ φ–– ρφ– h.+=

ϕ Tϕ– h, Tϕ ρ ϕ– Sϕ+( )
2

������������������������� .= =

H° �̂

H° �̂

ficients [8]. Therefore, so is Eq. (14) in the class

( ). As for the case ρ(0) = –1, there is a reduction
the preceding one.

Theorem 2. Suppose that a function ρ(t) ∈ ( ) is
twice continuously differentiable in a neighborhood zero
and |ρ(t)| < 1 for t ≠ 0. Suppose also that, in the case
|ρ(0)| = 1, the condition

(15)

holds. Then the singular equation (14) is uniquely solv�

able in the class ( ).

Under the assumptions of Theorem 2, not only the
operator 1 – T but also 1 – T2 is invertible. The follow�
ing lemma shows that T2 is an integral operator with a
weak singularity.

Lemma 4. For ρ ∈ H( ), the operator T2 acts by the
formula

(16)

where

and for the operator 1 – T2, the Fredholm alternative
holds.

Theorem 2 and Lemma 4 directly imply the follow�
ing representation of the Jost functions of the inverse
Sturm–Liouville problem.

Theorem 3. Suppose that functions r(t) satisfy the
assumptions of Theorem 1 and

Then the Fredholm equation

H° �̂

H° �̂

ρ( )'' 0( ) 0.<

H° �̂

�̂

T2ϕ( ) t0( )
ρ t0( )
4πi

����������
σ t( ) σ t0( )–

t t0–
�����������������������ϕ t( ) t,d

�

∫=

σ t0( ) ρ t0( ) 1
πi
���� ρ t( )dt

t t0–
������������

�

∫– H �̂( ),∈= °

σ x t0,( ) e
2ixt0r t0( ) 1

πi
���� e2ixtr t( )dt

t t0–
�������������������,

�

∫–=

g x t0,( )
e

2ixt0–
r t0( )a t0( ) 2a t0( )–

2 a t0( ) 2
�����������������������������������������������=

+
2 e

2ixt0–
r t0( ) r t0( ) 2–+

2
���������������������������������������������

+
e

2ixt0–
r t0( )

2πi
������������������� 1 e2ixtr t( )a t( )–

a t( )
������������������������������ dt

t t0–
��������� .

�

∫

ϕ x t0,( )
e

2ixt0–
r t0( )

4πi
�������������������

σ x t,( ) σ x t0,( )–
t t0–

�������������������������������ϕ t( ) td

�

∫– g x t0,( )=
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is uniquely solvable in the class (�), and the Jost func�
tions of the Sturm–Liouville problem are expresses as
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f1 x k,( ) eixk
1 a k( )ϕ x k,( )

2
����������������������� a k( )

2πi
��������� ϕ x t,( )dt

t k–
�����������������

�

∫+ + ,=

f2 x k,( ) e ixk– 1 ϕ x k,( )
2

��������������– 1
2πi
������ ϕ x t,( )dt
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�����������������

�

∫– .=


