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Abstract. A general scheme of a symbolic-numeric approach for solving
the eigenvalue problem for the one-dimensional Shrodinger equation is
presented. The corresponding algorithm of the developed program EWA
using a conventional pseudocode is described too. With the help of this
program the energy spectra and the wave functions for some Schrodinger
operators such as quartic, sextic, octic anharmonic oscillators including
the quartic oscillator with double well are calculated.

1 Introduction

For solving a stationary Shrodinger equation a lot of approximate analytical
and numerical methods are elaborated and applied because an exact solution
in explicit form exists only for some specific hamiltonians [1]. As is known,
the more used methods are diagonalization [2,3], quasiclassical approach [4],
continuous analogue of Newton’s method [5], different versions of perturbation
theory [6], normal form method [7,8,9,10, 11], finite-element method [12], 1/N
expansion [13], oscillator representation [14], variational and operational meth-
ods [15, 16, 17], simplectic method [18] and etc.

The method of integration by means of the power series is known to be a
simple one but it requires cumbersome work, and difficulties are increasing in
the cases when a differential equation has singularities[19]. On the other hand, an
application of the modern PC together with packages of symbolic manipulations
such as MAPLE, MATHEMATICA, REDUCE enable us to carry out necessary
calculations and construct the solution of differential equation in the form of
power series up to a desired degree.

In the present work, an analytic numeric approach for solving the time in-
dependent Shrodinger equation is proposed. The developed method is based on
finding a general solution as a sum of two independent solutions.

By this method the spectra and wave functions for a quartic, sextic, and octic
anharmonic oscillators and also for the quartic oscillator with two minima were
calculated. Obtained results are in good agreement with the ones available in
literature.



2 General Scheme of the Method

Let us consider the eigenvalue problem for ordinary differential equation

d*(x)

dz?

+2(E = V(x))¥(x) =0, (1)

where the function V' (z) can have a pole not above the second order in a vicinity
of the point xp, and independent variable x belong to the real axis or semiaxis.
For fixed value of E differential equation (1) has two linear independent so-
lutions yy(x) and yo(x). If the function V (z) is regular at point z = zo we find
y1(z) and yo(z) as solutions of Cauchy problem (1) with boundary conditions

dyy () B B dyo(z)
dz - 07 yQ(ZCO) - 07 dx
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yi(zo) =1, =1 (2)

in the form of Taylor series

N N
yi(@) =1+ @ —20)", wle) = (e —z0) + Y el (x —axa)t.  (3)
k=2 k=2

Substituting (3) into (1) we obtain recurrence relations for evaluation of coeffi-

cients c(kl) and c(,f).

If the function V(z) has a pole of order not higher than the second, i.e.

N
AE—V(@) = (v —20) 2> fulw — o),
k=0

the solutions of (1) will be found in form of generalized power series

y(z) = (z —0)’ Y ez —zo)". (4)

N
k=0

Substituting (4) into (1) we find determining equation

plp—1)—fo=0. (5)

It is known from the theory of ordinary differential equations [23] that the
form of independent solutions depends on the roots p; and ps of Eq. (5).

1. If the difference of roots, p1 — po is not equal to an integer, then two linear
independent solutions can be present in the form

N
yi(2) = (@ —20)™ Y e (@ — 20)*, (6)

N
ys(z) = (2 —20)” Y f? (@ — wo)".



2. If the difference of roots, p1 — po is equal to an integer, then two linear
independent solutions can be present in the form

N
yi(2) = (w —20)™ Y (@ —wo)¥, (7)

N
ya(z) = (& = 20) > i (@ — w0)* + & 11(2) In(w — o),

where p1 > pa.
In these two cases we also find the recurrence relations for coefficients ¢
c(,f) by substitution of expansion (6) or (7) into differential equation (1).
The general solution of Eq. (1) takes the form

(1)
ko

b(x) = Cryi(z) + Coya (). (8)

In physical applications, one needs to find bounded solutions, therefore, we
truncate an infinite interval to a finite one z € (Rycss, Rrigne) and supply the
following boundary conditions

Q/}(Rleft) - 07 Q/}(Ezright) - O (9)
Then coefficients Cy and C5 satisfy the set of homogeneous algebraic equations
Cry1(Riept) + Caya(Riesr) = 0, Cry1(Rrigne) + Coya(Rrigne) = 0. (10)

A nontrivial solution of system (10) is found from condition of equality to zero
of determinant

y1(Rierr) wa(Riese) | (1)

D(F) =
( ) yl(Rright) yZ(Rright)

which is carried out at certain values of energy making an energy spectrum
E = {Ey} of Schrédinger equation (1). For given £ = FEj, the coefficients
Cy and Cy are calculated from Eq. (10), including an additional normalization
condition

Resgnt
/ ()P = 1 (12)

Ricse

for the wave function (8).

3 Description of the Program

Following the description of the method for solving the eigenvalue problem for
equation (1), we present below the algorithm EWA. The corresponding program
EWA has been implemented in a Maple Package.



Input:

V(z) is potential;

Ricpe and Ryi4n: are bounds of a truncated interval of the independent variable
;
N is the number of terms of the power series;

Output:

{E;} and {¢y(z)} are set of energy levels and wave functions of the equation
(1);

The description of the local variables:

TypeV is the flag, if TypeV=0 then V(x) does not have singularity in zg, if
TypeV=1 then V(z) has a pole in zg;

c(kl) and c(,f) are coefficients of the two linear independent solutions of the equa-
tion (1);

p1, po are the solutions of the determining equation (5);

£_4 is a coefficient in expansion (7);

y1.2(Ricpt), y1,2(Rrighe) are values of two linear independent solutions in bounds
of interval;

C1 and C, are auxiliary coefficients;

1: V(z),zg — TypeV;

2: if TypeV=0 then

2.1: yi(z) — 1+Zf{v:2 c(kl)(x—xo)k;

220 ya(x) — (z —z0) + g ey (& — z0);

3: else if TypeV=1 then

3.1: plp=1)=fo=0 — pi, p;

3.2: y1(x) — (x —z0)” ZQLO c(kl)(x — o)k

831 ya(x) — (v —20) g et (@ — 20)* + € 13 (2) In(w — 0);
end if

4:  Ciy1(Ricpt) + Coyr(Ricpe) =0,
Ci1y1(Rrignt) + Coyo(Rrigne) =0, —  Ey;

5: Ey + normalization conditions — Cy, Co  —  ¢i(x)

Remark: This program involves the following sequence of steps.

Step 1. Determination of value of flag TypeV.

Step 2. Finding two linear independent solutions if the potential function V(x)
does not have a pole.

Step 3. The coefficients p1, pa, c(kl)7 c(,f) and £_1 of expansion (3) for regular
potential, or (6), (7) depending on the result of the solution for the determining
equation (5) for singular potential, are evaluated. At this step, the coefficients
c(kl)7 c(,f)7 and £ | depend on F explicitly.

Step 4. Evaluation of the energy spectrum from boundary conditions (10).
Step 5. Evaluation of the eigenfunctions using normalization conditions.



Table 1. The comparison of energy levels Egpwa with their exact values Fegact (14)
for { =1,2,3 (Riepe = 1075, Roggpe = 5.6, N = 116, £ = |Egw 4 — Fevact|/Bezact)

=1
n EEWA Eezact &, %
0 2.00000000044 2 0.0000000022
1 4.000000017 4 0.00000043
2 6.0000020 6 0.000033
3 8.000083 8 0.0010
=2
n  Epwa Eezact  €,%
0 3.00000000066 3 0.000000022
1 5.00000016 5 0.0000032
2 7.000013 7 0.00018
3 9.00037 9 0.0041
=3
n  Epwa Eezact  €,%
0 4.0000000067 4 0.00000016
1 6.0000011 6 0.000018
2 8.000066 8 0.00082
3 10.0013 10 0.013

4 Examples of the EWA Program Runs

To test the EWA program the one-dimensional (1) and radial Shrédinger equa-
tions were considered with the potential functions such that solutions are known:
A) infinite rectangular wall V(z) = {0, |z| < R; o0, |z| > R};

B) harmonic oscillator V(z) = z2/2;

C) the two-dimensional axial symmetric harmonic oscillator V (r) = 1/2wr? (in
this case we use r instead of ).

In case A), ten lowest energy levels coincide with exact E,, = n°n?/8R?, n =
1,...10, ... to nine significant figure accuracy if N = 68 and Rj.;s = —R, Ryigne =
R, R=1.

In case B), for « € [Ricft, Rright] (—Ricft = Rrignt = R =5.9, N = 138) the
accuracy £ of the 10th energy level obtained is less than 0.004% compared with
exact value Fop = 10.5. And absolute difference between calculated and exact
wave function | gw A — Yewact| 15 less than 107°. Note, the accuracy depends on
values of R and N, and its magnitude may be increased.

In case C), for w = 1 the differential equation on the semiaxis r € [0, 00)

dy(r 1— 4P
Tolr) <2E+ - rZ)ym o, (13)

has the double pole in origin, and its eigenvalues and functions are known [20]

En=2n+l|+1, n=01,2,..., [=0,+1,42, ... (14)



Table 2. The comparison of energy levels 2Egw 4 with their values Fegact from [3] for
different powers p (o = 0.0005 for p = 4,6 and o = 0.00005 for p = 8)

4, Riese = —5.6, Ryignt — 5.6, N = 116
n 2EJEWA Eezact e
0 1.0007486926734  1.00074869267319 0.000000000019
1 3.00373974818 3.00373974816873 0.00000000046
2 5.009711873 5.00971187278811 0.0000000080
3 7.018652599 7.01865259205752 0.00000010
4 9.0305496 9.03054956607471 0.0000011
5 11.045391 11.0453905781793 0.0000094
6 13.06317 13.0631635776785 0.000065
7 15.0839 15.0838565876260 0.00043
8 17.1078 17.1074577926535 0.0022
9 19.134 19.1339554918523 0.0031
10 21.164 21.1633381057038 0.0060
p =06, Ricpe = —4.7, Rrighe = 4.7, N =116
n 2EJEWA Eezact £
0 1.001848816 1.0018488155723 0.000000045
1 3.01278097 3.0127809606901 0.00000056
2 5.0448002 5.0447999257845 0.0000060
3 7.110096 7.1100928558609 0.000048
4 9.21860 9.2185817487322 0.00030
5 11.3779 11.377808617207 0.0015
L8, Ricyt — —4.6, Ryigni — 4.6, N — 108
n 2EJEWA Eezact £
0 1.00064637 1.0006463698740 0.00000012
1 3.00572693 3.0057269553512 0.00000070
2 5.0253946 5.0253949690878 0.0000061
3 7.07668 7.0766689726027 0.00016
4 9.18033 9.1802567401069 0.00088
5 11.3565 11.356154413293 0.0038
(r) = (=1)" _ 2l (_ﬁ) s L (2 (15)
Yni\T) — (nJrl)'eXp 9 r n \T )

where L{! )(7"2) are the Chebyshev—Laguerre polynomials. For equation (13), the
eigenfunctions and the energy spectrum were found with the help of the program
EWA. A comparison of the calculated and exact eigenvalues for different values
of [ is presented in Table 1. As an example, we present the series expansion of
two linear independent solutions of equation (13) at point » = 0 for [ = 1 and
N =8

3 Er?  (E?+20* (B +8EYW®  (E* +20E” + 2408
ylr) =1 <I_T+ 18 1152 16080 7
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