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Abstract. The symbolic-numeric program SELFA for solving the the
2D boundary-value problem in self-consistent basis method is presented.
The corresponding algorithm of this program using a conventional pseu-
docode is described too. As example, the energy spectrum and wave
functions of E-type for generalized Henon—Heiles Hamiltonian were ob-
tained.

1 Introduction

As is known, one of the more elaborated and widely applied methods of solving
the eigenvalue problems describing the Hamiltonian systems is a diagonalization
method [1]. However, in the case of multidimensional systems having a potential
energy surface with few local minimumal2], the efficiency of this method de-
creases in the energy region where in a classical limit a motion becomes chaotic
[3]. An accuracy of numerical calculations of the corresponding set of energy
levels of such type systems decreases drastically.

Usually one needs to diagonalize the Hamiltonian matrixes of a large dimen-
sion that leads to essential computer resource and run-time. In present paper the
eigenvalue problem for a two-parametric generalized Henon—Heiles Hamiltonian
corresponding to a non-integrable system is solved on the basis of a numeri-
cal method announced in [4]. In this method, the two-dimensional Schrédinger
equation is reduced to a set of ordinary differential equations. Then the corre-
sponding eigenvalue problem is solved directly instead of a rather cumbersome
diagonalization of the above 2D problem. Such an approach is more promising
due to an exact reduction by angular variable while numerical integration with
a controlled accuracy is applied by a radial variable. This reduction is done with
help of a self-consistent basis taking into account a discrete symmetry of the
Hamiltonian under consideration that leads to a separation of the Hilbert space
into the invariant subspaces and reduces the needed computer resources.



On the basis of this method we have developed the algorithm and MAPLE
program SELFA for a symbolic-numeric solution of the two-dimensional Schroé-
dinger equation. In this paper we give a unified description using a conven-
tional pseudocode for the algorithm and program elaborated and present the
energy spectrum and wave functions obtained by the program SELFA for a two-
parametric generalized Henon—Heiles Hamiltonian.

2 Description of the Self-consistent Basis Method

We consider the stationary two-dimensional Schrodinger equation

H(z,y)p(x,y) = B(e,y), (1)
with a two-parametric generalized Henon—Heiles Hamiltonian
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where b and ¢ are the real-valued parameters. In a polar coordinate system,
z=rcosy, y =rsing, Egs. (1) and (2) take the form
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A regular and bounded solution of the partial eigenvalue problem for Egs. (3)—(4)
can be found in terms of the Fourier series

(r, @) = Z [A;(r) cos lp + By(r) sinlyp). (5)
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Using the Galerkin projection of Hamiltonian H (r, ¢) and the unknown solution
u(r, ) onto basis functions, sinl’¢ and cosl’p (I' =0, ..., n),

%/O% cosll (H(ﬁ @) — E) u(r, ) =0, (6a)
%/o% sinl’p (ﬁ(n @) — E) u(r, ) =0, (60)

we obtain the following infinite system of the differential equations of the second
order:

7”2146/ + agho — 28B3 =0,

12 A + a1 Ay — BBy — By =0,

r2B] + 1By — BAy + BA4 =0,

r?A, +asAs — 3B1 — 3B5 =0,

2By + aa By — BA; + BAs =0, (7)

7”214/3/ + aszAs — BBg =0,

1By + agBs — A + fAs = 0,

1A+ A+ BBis — B3 =0, 4<Ii<mn,

rzBlN + ;B — BA;_3+ BAi4s =0, Apsyp = Bpapn = 0.



Here parameters oy and 3 are defined by oy = 2Er? — 2¢r% — 9% — 12 + 1/4,
B = br°/3. One can see that the system of equations (7) separates to four
independent systems of the second-order ordinary linear differential equations
(ODEs). This fact is a consequence of a discrete symmetry, Csy, of the Henon—
Heiles Hamiltonian (2) and corresponds to three irreducible representations:
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Ayt Bg, Ag-3, (=12,

Ei: Asiy1, Bsira, Bsiga, Asies, 1=0,1,..,
Eo: Bey1, Aeip2, Asiya, Begs, 1=0,1

The E-type states of the type are double degeneracy because the eigenvalue
problems for these two subsystems of the ODEs, (E; and E;) have the same
energy spectrum.

As an example, below we consider only Eo-type states. Using an appropriate
transformation

Beiy1 = 28141, By = 282, Asir2 = 28143, Ao = 28144,
Agiva = 28145, Ag g = 28146, Beirs = 28117, By s = 28148,

of the above functions, A;(r), B;(r) (4,7 = 1,...,n), to the new ones, z(r)
r = 1,...,2N, where N is a number of equations of the ODEs of the second
order, we rewrite the truncated set of linear second order ODEs (E5) in the form
of the linear first order ODEs

21! —20 =0, 2/ 4+ oz — B(z3 — 25)
23’ —24 =0, 24+ anzs — (21 — 27)
25/ —zg = O7 26/ + 25 + 5(21 — Zg) = O7

—0,
=0, (8)

To solve numerically the obtained eigenvalue problem one needs to reduce in-
finite interval » € (0, co) to a finite one r € [h, 7], divide it by two subintervals,
and construct the general solutions

N
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Here Cy, are arbitrary coefficients and ,z?k(r)7 zj?’ok(r)7 7,k =1,..,2N are indepen-
dent basis solutions satisfying the set of equations (8) with boundary conditions,

Zulh) = My, 255 (re) = M3, (10)

where values M jQ , and M 71 are determined from asymptotic expansions of reg-
ular solutions. Then, the continuity conditions

25 (re) = 25°(re),
lead us to the algebraic eigenvalue problem

T5,Cr = ERCh,



with a discrete spectrum Fy, i.e., at definite values of energy ¥ = F composing
a low part of spectrum, o(F) = {F1, Es, ..., En, ...}, of the eigenvalue problem

(1)-(2).

3 Program Description

Following the description of the method for solving the eigenvalue problem (1)—
(2), we present below the algorithm SELFA. The corresponding program SELFA
has been implemented in a Maple Package.

Input:

N is the number of the second-order ordinary differential equations of the FEs
type;

b, c are the real-valued parameters;

h and Rend are boundary points;

r. is a central point.

Output:

{E,}Y_| is a low part the energy spectrum;

{us(r,#)}Y_, is the wave function corresponding to the energy value E in a
form of the Fourier series.

The description of the local variables:

u(r, ¢) is the local function in a form of the Fourier series.

V(z,y) and V(r, ¢) is the Henon—Heiles potential function in Cartesian and po-
lar coordinates;

n is the number of the harmonics;

Ap = Ag(r), Br = Bi(r) (k= 0,1, ..., n) are the coefficients of the Fourier series;
Baseq(r, ¢) is the Lh.s. of the basic equation (ﬁ — E)u = 0 in polar coordinates;
BaseqA;, BaseqB; are the L.h.s. of the second-order ODEs (7);

Etype is the set of the second-order ODEs (7);

zj(r) are the unknown functions of the system of ODEs of the first order (8);
ds are the Lh.s. of the first-order ODEs (8);

dsys is the set of the first-order ODEs (8);

M? is the set of the initial conditions (10) on the left boundary for construction
of sets of linear independent solutions of system of ODEs of the first order dsys;
SOLN is the set of the linear independent solutions (9) of the set of the ODEs
dsys;

M is the set of values of the linear independent solutions (9) at the right
boundary point Rend,;

TP, T are the sets of values of the linear independent solutions (9) at the cen-
tral point r.;

T' is the matrix of the continuity conditions;

{C;} and {Cj,; } are auxiliary eigenvectors;



n:=N+N/2-1;

u(r, ¢) == 2111/0_ \/_

Viz,y) = %x +%y +b(a” y—%y ) +e(@® 197
Vir,¢) = subs(z — rcos(¢),y — rsin(¢), V(z,y));
2
Buseq(r,6) i~ 73z + 2B + 513 = V(1. 6) ) ulr o)
for [ from 0 to n do
BaseqA; = r’coeff(Baseq(r, 6), cos(1¢));
if [ > 1 then
BaseqBy := r*coeff(Baseq(r, ), sin(1¢));
end if;
end do;
for i from O to (n+1)/6 —1 do
Ftypey; = BaseqBg;1;
Ftypey; 1 = BaseqAg;ia;
Ftypey; s = BaseqAg;s;
Ftypey; 3 = BaseqBe; 4;
end do;
for i from 0 to N — 1 do
for j from 0 to (n+1)/6 —1 do
Etype; = subs({Bsj 11 — 28j41(r), Agjra — 28;13(7),
Agjya = 28545(r), Bojis — 285107(r)}, Btypei);

Z Ay cos(k @) + By sin(k ¢));

end do;
end do;
for i from O to N — 1 do
dzo;1(r
gy = —2H00 () _ 22iy2(r) = 0;
dzoiio(r)  Elype;
d i = = U
82i42 ar + 2 ;
end do;

dsys = {dsy,dss, ...,dsan };
for ¢ from 1 to N do
SOLN = dsolve({dsys, z;(h) = Mloj7 (G=1,...2N)} {z(n) ?fl);
T := SOLN : z(r.), (j =1,..,2N);
SOLN = dsolve({dsys, zj(Rend) = M7, (5 = 1,..., 2N}, {z;(r) ?fl);
17 = SOLN : zi(rc), (j=1,..,2N);
end do;
for : from 1 to N do
for 7 from 1 to 2N do
Tij = Tioo ngv
end do;
end do;
T;C5 = BC;  —  {Bs {Cjis} 1y
for s from 1 to N do



SOLN, = dsolve({dsys, z;(h) = Cj.s, (7 =1, ..., 2N )}, {z;(r) ?51);
us(r, ¢) := SOLN; :

SO (55 a(r) cos((65 4 2)6) + 7s45(r) cos (67 + 4)9)

2541 () SIn((6 + 1)) + 2547(7) sin((65 + 5)8) )
end do;

Remark: This program involves the following sequence of the steps.

Steps 1-2. The wave function in the form of the Fourier series is presented.
Steps 3—4. Construction of the set of the second-order ODEs. At step 4 instead
of formula (6) the standard MAPLE procedure “coeff” for extracting coefficients
affecting cos(l¢) and sin(l¢) is used.

Steps 5—6. Construction of the set of the first-order ODEs.

Step 7. Construction of the linear independent solutions with help of the con-
ventional subroutine dsolve of a Maple package for numerical solving of a set of
the 2N first order ODEs.

Step 8. Construction of continuity conditions matrix.

Step 9. Evaluation of the energy spectrum.

Step 10. Evaluation of the eigenfunctions.

4 Examples of SELFA Program Runs

The eigenvalues and functions of Es-types were calculated by means of the pro-
gram SELFA for a generalized Henon—Heiles Hamiltonian. Values of the lowest
energy levels together with the ones obtained by the diagonalization method [5]
are presented in Table 1. The energy spectrum in Ref. [5] was obtained by a
direct diagonalization of the Hamiltonian 495 x 495 matrix but in our approach
the same accuracy was achieved by solving system (8) of 2N = 16 differen-
tial equations of the first order. It is shown that in our approach one needs a
less computer resource and running time in comparison with the diagonalization
method. The program SELFA was also used to calculate the corresponding wave
functions, two of which are shown in Fig. 1. One can see that a symmetric struc-

Table 1. The energy spectrum of E-type for the Hamiltonian (2) at fixed values of
parameters b = 0.04416, ¢ = 0.00015

Ediag[ll] FE

.11.999384(1.999372
.12.999628(2.999641 6.976317(6.976625
.13.992368(3.992439 6.988910(6.989034
.14.990280(4.990394(10.|7.964477|7.964810
.15.002921(5.002935(11.(7.989611|7.989745
.15.980721|5.980968(12.(8.014769|8.014855

Ediag[ll] FE
6.005955(6.005972

Lo w®

R NN




Fig. 1. Tsolines of the Eq-type wave functions uo(z, ) (in left panel) and w11 (z,y) (in
right panel) of the generalized HenonHeiles Hamiltonian (2) at b = 4.416 - 1072 and
¢c=15-10"* (dark and white domains correspond to negative and positive values,
respectively)

ture of isolines of the wave functions wug(z,y) and wi1(z, y) reveals explicitly the
Csy symmetry of the generalized Henon—Heiles Hamiltonian (2).

5 Conclusions

A MAPLE program SELFA for a symbolic-numeric solution of the two-dimensi-
onal Schrodinger equation in self-consistent basis method is presented. An effi-
ciency of this program is shown on an example of the generalized Henon—Heiles
Hamiltonian (2) for which the lowest energy levels and wave functions were calcu-
lated and a comparison was made with the results obtained by diagonalization
method. The program SELFA may further be applied for studying the eigen-
problem for different Hamilton operators and, for example, for investigating the
avoiding crossing phenomena of eigenenergies, etc.

One of topical tasks here is a comparison of numeric and analytic results for
spectrum and wave functions in a vicinity of avoiding crossing of energy lev-
els with respect to parameters that can be performed with help of the above
algorithm SELFA and programs of normalization and quantization of the poly-
nomial Hamiltonians [6,7]. Such a comparison allows one to reveal the nature of
quantum chaos of the Hamiltonian systems that in quantum case has quantum
counterparts like a degeneracy of the energy levels and tunnelling through a
potential barrier with few local extrema and to determine various decay mech-
anisms of the quantum system under consideration. A study in the field will be
a subject of our further investigations.
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