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ABSTRACT

This paper represents a systematic investigation of slope evolution diffusion models and has the following sections: (1) The
model of slope development with linear coefficient k = kx; (2) The model of slope development with quadratic coefficient
in x; (3) Slope development model with vertical lowering of base level (downcutting); (4) Slope development model with the
base level a horizontal variable (undercutting); (5) Steady-state regime of undercut slopes; (6) Model of a pediment and
scree slope formation.

The comparison is made between mathematical and classical methods of slope evolution analysis.

KEY worDs  Diffusion models Slope development Steady-state solution Undercut slopes

INTRODUCTION

Diffusion models have been used to describe various geomorphological processes concerned with denudation
and material accumulation. Such models were used to describe slope development more than 20 years ago by
Culling (1960, 1963, 1965). A balance equation of the material (continuity equation) forms the basis of these
models

dy _0q
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where ¢ is the material discharge, defined as the flow past a unit plane perpendicular to the direction of flow;
y(x, t) is the elevation, x the horizontal distance, and ¢ is the time. Taking the condition that the material
discharge is proportional to the surface gradient

0
= k(x5 @
0x
substitution into equation (1) gives
dy 0 dy
Friade (k(x, ] 5;) 3)

the diffusion model of slope development.
By its structure equation (3) is analogous to the models applied to problems of heat conduction and
diffusion. In which case expression (2) is analogous to Fourier’s and Fick’s first laws of heat conduction and
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diffusion, respectively. The diffusion model was investigated by Culling for the case of a constant coefficient
corresponding to stable conditions both in climate and lithology. The model proved to describe well the long
term evolution of slopes, their flattening, denudation on convex parts, and accumulation on concave ones.

Culling (1960, 1963) worked out a great number of boundary-value problems for equation (3) with constant
coeflicients corresponding to different geomorphological situations basing his treatment on the standard work
of Carslaw and Jaeger (1959) on the conduction of heat m solids. For the given case (k = constant)a solutionm
classical terms gives the slope development as a Fourier series (of trigonometrical functions). On the other
hand where the coefficient is a variable and depends upon the space coordinate k = k(x) then different kinds of
Fourier series are obtained. It is useful to consider the problem for the variable coefficient as it allows the taking
into account of the spatial variability of slope forming factors.

When solving boundary value problems over a finite interval and for k = k(x) two kinds of Fourier series are
involved (Trofimov and Moskovkin, 1976, 1983).

1. A Fourier—-Bessel series appears when k(x) = ax + b and when k(x) = ax", n # 2.
2. A Fourier-Legendre series appears when k(x) = ax*+bx+c, a < 0.

We proceed to consider these two cases in detail.

THE MODEL OF SLOPE DEVELOPMENT WITH LINEAR COEFFICIENT k = kox.

The possibility of using a linear coefficient in the diffusion model has been discussed in a number of works
(Mizutant, 1970; Kirkby, 1971; Carson and Kirkby, 1972; Hirano, 1975, 1976) but non-stationary cases were
not covered. In this connection we have developed the solution for the case corresponding to a slope with fixed
base level developing under the action of sheetwash with constant precipitation (Trofimov and Moskovkin,
1983). In an established (steady) phase of run-off the unit water discharge (Q) increases linearly down the slope
and so

oy 0

8
= —-£§<kox %),Y(l, =0, y(x,0)=f(x), 0< x <! “)

where x is the horizontal distance from the divide, y is the elevation, / is the horizontal equivalent (slope length),
ko 1s a constant depending upon the run-off coefficient, the intensity of rainfall, the physical quality of the
surface and on soil particle transport by overland flow, while f(x) is the initial slope profile.

One can assume that when a slope has homogenous physical properties then the unit sediment discharge (q)
is proportional to the unit water discharge (Q) for a given gradient. The constant of proportionality (p) gives
the contribution to the turbidity (sediment concentration) of the flow which itself is proportional to the
gradient. Thus, g = pQ, p = — cdy/0x, where c is an erosion coefficient while Q = bIx, where b is the run-off
coefficient, and I is the intensity of rainfall. It follows that K, can be determined from observations of unit
water (¥,,, m?) and sediment yield (W, m?) according to the formula

ko = cbl = W, bI/V,i (5)

where rainfall intensity I is measured in m/min and i = — dy/0x, regarded as a constant. Note that V;, and
W,, can be taken as the total water and sediment yield in the same measurement units (m?, tonnes). The general
solution of equation (4) is as follows

o k 2
Yo 0=} C..G?‘P(- Ofl"t)lo(un\/(X/l))
n=1
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C, = T J; 2f(1z%)J o (p,2)dz

where p, are the positive roots of the equation J(z) = O (see Appendix 1).
For large ¢ when all but the first term of the Fourier—Bessel series are reduced to negligible proportions
because of the rapid convergence of the exponential factor (as the sequence of roots squared), one obtams the
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regular solution

kouit
Veeg%: 1) = € exp(— 2l )Jo(ul\/(X/l)) 7)

which implies that a slope profile in the course of time tends to the convex form of J,(u) between u = 0 and
u = u,, and then flattens and slowly tends to a horizontal surface.

The notion of a regular regime in geomorphology was introduced by Devdariani (1963, 1967) with the
analogy of regular regime theory in heat conduction. According to this theory the higher terms of a series
solution disappear with time leaving only the first harmonic (Fourier, 1822). Such a regime in heat conduction
theory at which the influence of the initial conditions disappears was termed a regular regime (Boussinesq,
1901).

The independence upon initial conditions here means that a common slope configuration does not depend
upon initial profile configuration any longer and is determined by the first harmonic form only (convex form).
Here the initial condition (initial slope profile) with the help of which Cy, is defined (in integral (6)) describes the
first barmonic amplitude only hut not the character of its form (convexity, concavity and so on).

We may now consider the possibility of using equation (6) to determine the soil loss on slopes. The soil loss
volume (W) during the interval 7 from a section of the slope of unit width and of horizontal length (I,) from the
point of initial run-off (x = 0) will, in accordance with slope profile lowering, be given by

lo
W(z) = f [/(¥) = y(x, 1)] dx ®)
0

where f(x) and y(x, 1) are the slope profiles at 1t = 0 and ¢ = 7 respectively.
Substituting for ¢ = 7 from equation (6) and performing the integration

Iy @ 2
W(z) = j f)dx—4/(ol) ¥ T1(tay/Uo/1)) exp <— i ) Ll 2123 J o (11, 2)dz 9)
0
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where |, < I (see Appendix 2).

This expression may be used to calculate the soil loss from slopes of arbitrary configuration and demands the
minimum of initial parameter values. However, the complexity will necessitate numerical methods in the
general case. A simpler expression is obtained for the computation when the initial slope is rectilinear with
length I, = I: f(x) = h(1 —(x/I)). Substituting into equation (9) and mtegrating we obtain (see Appendix 2)

@® 2
W) =" 16n y exp(—Mr>/uﬁ (10)
2 n=1 4l

We now make a verification of formula (10) in accordance with some artificial rainfall experiments
conducted at the Kirov Pedagogical Institute by Sheklein (Chitishvily, 1974); with the values, I = 1 mm/min
= 10"3m/min, b = 0:04, 1 = 581 min, i = tan 7° = 0-1228, W,, = 0-01373 m? (from the conversion: sediment
yield —3-57 tonnes/hectare, bulk density —1-3 tonnes/m?), ¥,, = bllt = 0-1162m?>.

From formula (5) we have for kq the value 3-8446 x 10~ > m/min. The height difference for a length ! = 50 m
is given by h = tan 7° 50m = 6-14m. The positive roots of J,(z) = 0 are available in tables. Computation
shows that taking the first six terms in equation (10) leads to a fourfold excess of computed soil loss (W) over
measured volume (W, ). The extension of the calculation to 15-20 terms is enough for a 5 per cent accuracy.

Consider now the mathematical model for the longitudinal profile of a river valley in steady state conditions
under the action continuous oblique uplift. Water discharge is assumed to increase linearly downstream. An
oblique uplift results from the tilting of the plane of the landscape and is characterized in this case by a linear
increase in height or velocity from lower to upper reaches of the river. Such uplift appears to have first been
described in detail by Makkaveev (1955) and corresponds to valley development on the limb of a growing
structure or within the limits of a tilting block.

Taking into account the additional volume ahove base level introduced hy the tectonic factor

0 dy
al:a(ax+Q0)a]+ Vol =x/1)=0 (1
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where the expression in square brackets is the sediment discharge, taken as directly proportional to the product
of the water discharge and the gradient, water discharge being taken as increasing linearly along the length of
the river beginning at the source; Q, represents water discharge at source (inflow); a = constant, the increment
in the mtensity of water discharge with distance downstream; a = constant, a coefficient characteristic of the
physical properties of the bedrock and sediment load; ¥ is the velocity of uplift at the source (x = 0); ! is the
horizontal distance of stream length; while y is the river profile elevation. The second term represents an
oblique uplift with a linear decrease in velocity from source to mouth, where it is taken as zero.

Two boundary conditions are considered; (i) constant base-level at river mouth; and (ii) constant sediment
discharge at source:

yl)=0

and

= —(gg = const. (12)
x =0

dy
aQo a

By integrating twice and using equation (12) we obtain as a solution

(Voo Vo008 4o ax+Q, Vo 2 2y Vo Qo
—(Loko | Yo¥o_do), (aXF 8o} To 2 gz Tofy Ko, 13
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Solution (13) is a monotonic decreasing function and allows for the disclosure of a number of non-trivial
regularities. We may determine the existence of a point of inflection separating an upper convex segment froin
a lower concave one. Thus setting the second derivative to zero we derive the point of inflection (x,)

21Q, Qo 200! ' Qo
= 1+== - - 14
¥o [ a ( * 2la Vo a (149
The existence of an inflection point within the segment (0, /) depends upon
Qo _ 9o
= > 1

Note this inequality was obtained under the assumption that x, > 0 in which case the result x; <! is
automatically satisfled and there exists a real root in expression (14). Inequality (15) can be rewritten as

Vola > qo/Qo = po

where p, is a non-dimensional parameter of sediment concentration at the river source. As al = @, — Q,, where
Q, is the water discharge at the mouth (outflow), then the imequality can be reformulated as

[Vol/(Qi—Q0)] > pos

thus giving a simple criterion of the existence of a point of inflection in longitudmal river profiles.
Theoretically with increase in the value of ¥, (other things being equal) the inflection point migrates
downstream to a definite limit within [0, /]. This limit is found from the expression (14)

lim x, = [21‘?0 (1 +@>]”2 _% (16)

Voo o0 2la a

Thus in conditions of oblique uplift the convexity in a river’s upper course is due to the uplift while the
concavity in the lower course is caused by the increase in water discharge. These results do not change

0
qualitatively with a more complex dependence of sediment to water discharge, e.g. g = —aQ" Ei—), n>1and

with a non-linear increase in water discharge downstream.
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THE MODEL OF SLOFE DEVELOPMENT WITH QUADRATIC COEFFICIENT IN x

For the case when the coefficient k increases, at first as in the previous model (4) and thereafter diminishes due
to an increase in the infiltration rate in the lower part of the slope, the behaviour of the coefficient is
approximated by the quadratic function k(x) = ax? + bx +¢, a < 0, and we have the model (Trofimov and
Moskovkin, 1976, 1983),

0 0 0
y_o (ax2+bx+c)—y , Y(x, 0) = f(x)
Jat  ox 0x

(17)
X1 <X < X2

where x; and x, are the roots of the quadratic equation ax?*+bx+c¢ =0, a < 0.

The points x; and x, are the singular points of an ordinary hypergeometric equation derived from (17) by
separation of the variables. A solution to equation (17) has been obtained in Fourier-Legendre form (Trofimov
and Moskovkin, 1976, 1983) (see Appendix 3):

a

yiz, )= Y C,P,(z)exp[a(n+ )nt]

l +1 (18)
C, = <n+§>f f(@)P,(2)dz

X =X +(x2—-x,)(l—;)

Pa(2) is the Legendre polynomial of order n. The regular and limiting solutions are available from (18)
(Trofinov and Moskovkin, 1983).

where

{ Yeeg(X: 1) = Co +C, [1 _M] exp (2at)
(xz2 —x;)

Yiim (X, £) = Cy = const.

(19)

Hence the slope profile in the given model in the regular regime with ¢ large tends to a straight form and a
horizontal surface. To determine the relative relief after limited flattening, with the help of the expression for C,

y(x0)=f(x)
;y(a’.r)
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Figure 1. To the problem of the evolution both symmetrical and conjugate slopes
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(18) we have for n = 0

X2

Yim = Co = — j S 20)
X2 Xy Jy,

This is the average height of the slope form and consequently in the evolutionary process the square of the

curvilinear trapeziuin enclosed by the profile y(x, t) on the segment [x,, x, ] remains constant. For a natural

slope this means that the amount of material removed from the upper parts of the slope is equalled by the

amount accumulated at the base.

Unless the lower point is fixed spatially by some external factor, e.g. a stream, it will migrate as a diluvial shelf
is built up. However, if we take an image about the vertical plane through x,, as in Figure 1, the model
corresponds to the filling of a symmetrical through, the evolution heing given by a series of symmetrically-
conjugate convex-concave curves, as in Figure 1.

The case considered, that of an increase in water discharge in the upper parts of the slope and a decrease in
the lower parts, is typical of arid mountain regions particularly if a loose permeable material lies on the base
slopes (Makkaveev, 1955).

SLOPE DEVELOPMENT MODEL WITH VERTICAL LOWERING OF BASE LEVEL
(DOWNCUTTING)

We now proceed to consider problems where there are variable conditions on the boundaries. These problems
appear when account is taken of undercutting (both in deepening and of lateral erosion/abrasion) in general
slope development processes. In the diffusion model this dependence can be simulated by placing conditions
on the boundary conditions. Two principal cases arise: (1) slope development with a vertical change in base-
level (downcutting); and (2) slope development with a horizontal change in the lower boundary (undercutting).
Let us analyse the first case.
When modelling this type of slope development Culling (1963) gave a solution to the problem of describing
the evolution when the controls were on one side the divide and on the other a downcutting stream:
2
Dk =000 = 90,0 =0 e
Carson and Kirkby (1972) considered the particular case of the established stationary solution of this problem
when the rate of lowering of base level is a constant, ¢(t) = Bt, with an initial surface y(x, 0) = 0 finding that

pix* — P

2k (22)

y(X, l) = - Bt +
Ahnert (1973) has applied numerical metbods in the simulation of this process using his comprehensive model
for viscoplastic flow modelling a steady-state convex profile. Armstrong (1976, 1980) has obtained a solution
analogous to equation (22) using his three-dimensional process—response model.

The more general solution of the prohiem corresponding to the two cuttings that occur according to
arbitrary laws ¢, (1) and ¢, (¢) was developed by Culling (1965, p. 252). It covers all possible cases of
rejuvenation by vertical fall of local base levels. The solution when ¢, = ¢, = K¢, K being the constant rate of
lowering of base level, is given in bis paper. In addition to that solution consider the problem of two base levels
falling at constant but differing velocities (S, y = const) and cutting an initial horizontal surface

dy 8%y
— =k ==; )= —pu, = -7 =
= k=53 90,0 = =B 3,0 = =75 (x,0) = 0 (23
Consider the case § > vy (the case for § < y is analogous). The solution of equation (23) when ¢ is large enough
for the exponential terms to be negligible is (Esin and Moskovkin, 1980)
_(B=pix  (B—y)x(x*=1)  Bx

yix, 1) = I + okl +ﬁ (l—x)—pt (24)
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We analyse two variants:
1. When y = B, then by Culling (1965, p. 252)

oo )= EX -~ 29)

i.e. a convex parabolic interfluve profile is formed with a relative relief of h = BI?/8k (the greater the rate of
lowering of base level () or of the landform dimension (!), or the smaller the coefficient &, the greater the
relative relief).

2. When § > y, the intervalley divide migrates towards the gentler slope on the right until it reaches a limit at
the point x = I (when § < y the divide moves to the left, i.e. always towards the gentler rate of downcutting).
A divide displacement law can be found from the condition dy/dx = 0

lﬂ ')’Blz 12 )1/2
=7 _ -2k 26
=g ((ﬂ (I A 26

The disappearance of a local maximum of equation (24), i.e. when the divide reaches the point x = /, will occur
in time

* = (12/6k)[ 2y + B/ (B —)]. 27
The time t* is measured from the moment at which the solution (24) is established and this time is estimated
from the general solution of equation (23). Both Ahnert (1973) and Armstrong (1976) have obtained from their
models the displacement of the divide towards the gentler slopes. This migration of the divide is a
demonstration of the unequal slopes law (Gilbert, 1877). According to this law, if opposite slopes have differing
steepness then the steeper slope recesses faster than the gentler one and so the divide moves towards the gentler
slope.

SLOPE DEVELOPMENT MODEL WITH THE BASE-LEVEL A HORIZONTAL VARIABLE
{(UNDERCUTTING)

Such a model arises when one considers lateral erosion or abrasion factors. Culling (1963), while simulating
thls process, considered a slope form of finite dimensions moving with a constant velocity. This is equivalent to
the material discharge set as P
qg=—k Fte y

0x
In this case the material balance equation (1) was reduced to a diffusion equation plus an additional convective
(Culling’s mass transport) term — cdy/0x. Later Hirano (1975, 1976) considered similar equations.

We wish to consider the process of undercutting according to equation (3) with a zero condition on the
clevation y at the lower base level control which moves horizontally at constant height. If the lateral
displacement has a constant velocity b (velocity of slope undercutting) we have the variahle boundary value
problem (Trofimov and Moskovkin, 1976)

d 6
2= k2 bt < x < +o03 (b, ) = 0 y(x, 0) = f(x) (28)
the solution of which is as follows (see Appendix 4)

(bzt bx
exp| ——=—

_ 4k 2k> *eo bz (z—x+b1)? (z+x—br)?
=T B (o () S gm0

The solution of equation (29) for an initial straight profile f(x) = ax (Esin and Moskovkin, 1980) has shown a
convexity at the base of the slope. The gradient increases at the base and in time would lose stability. Note there
exists no particular solution to equation (28) of the type y = a(x — bt), corresponding to the parallel retreat of a
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straight slope as this does not satisfy the problem for any combination of values of g, b, and k. It follows that
any slope satisfying a inodel with constant coefficient cannot retreat strictly parallel i.e. preserving their
straightness. Note, the solution y = a(x — bt) is one of the kinematic models of Scheidegger (1970), describing
the development of steep slopes. Below we show what kind of steady-state solutions may exist corresponding
to parallel retreat of slopes undercut with constant velocity.

STEADY-STATE REGIMES OF UNDERCUT SLOPES

We have obtained (Moskovkin and Trofimov, 1980) the steady-state solution of the boundary-value problem
(28) corresponding to a steady-state stage of parallel retreat of an undercut slope (see Appendix 3).

y(x,t)=h|:1—exp(—g(x—bt)>} (30)

Culling (1963) when solving the diffusion equation with a convection term over a semi-infinite region came
to the similar steady-state solution (30) for an initial vertical (scarp) slope. It should be noted that Culling’s
model for the semi-imfinite region moving with a constant velocity is mathematically equivalent to our problem
(28) on the interval bt < x < + oo if in the latter case one changes the variables, z = x—bt, t = ¢.

Solution (30) has been used in the analysis of the stability of an initial slope with profile similar to (30) (see
Appendix 5)

y(x,0) = h[1 ~exp(—cx)] (31)

where h is the limiting horizontal surface of the slope. The value b = ck is critical and defines two different
regimes of slope developinent: when b > ck the gradient at the base of the slope increases, the brow moving
gradually up the slope; when b < ck the slope is subject to downwearing. The parameter can be expressed in
terms of the gradient (i) of equation (31); when x = 0, ¢ = iy /h. The studies of Quigley and Gelinas (1976) on
the shores of Lake Erie confirm the existence of these regimes. They distinguish three morphodynamic types of
shore slope: (1) The eroded cliff slowly retreats preserving its profile form due to natural abrasive processes at
the base and slump and talus formation of the upper parts. This type is developed when the lake has average
levels and when a critical equilibrium is obtained between slope development and abrasion processes; (2) The
steepness of the eroded cliff increases rapidly due to active undercutting. This type is developed under high
water levels and active abrasion; (3) The gradual downwasting of the cliff face occurring in periods of low water
level.

Further analysis shows that equation (29) with an initial exponential profile (31) tends in the limit as t — oo
to the steady-state solution (30), i.e. it is the asymptotic solution to problems with initial conditions (31). Thus
as previously obtained the increasing and decreasing regimes of the slope base are transient and im the course of
time a steady-state regime will be established. Moreover the establishment of equation (30) will take place from
an arbitrary initial profile satisfying the conditions of equation (30), namely

and ybt,t)=0

lim y(x, t) = h = const.

X a0
This can be proved with the help of the asymptotic behaviour of the integral in equation (29) for large ¢. For this
it is sufficient to replace f(z) by its asymptotic value, i.e. f(z) = h in the integral in equation (29). Then
integrating after letting t — co we arrive at the steady-state solution (30) (see Appendix 5).

The obtained results are of great importance for geomorphology. It is almost impossible, due to our lack of
knowledge, to determine the precise form of initial slope profiles and so trace their subsequent development to
compare with present-day states. The steady-state solution does not require such knowledge.

Introducing subsidence into the diffusion inodel (28)

i) 0
Yk

2
ke e
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where V' = const., t > 0 gives the velocity of subsidence. There exists a steady-state solution for this case
(Trofimov and Moskovkin, 1983) (see Appendix 6)

y(x,t)=ATk(1—A—I;>[1—exp(—-%(x—bt))}+%/(x-—bt) (33)

where y(bt, t) = 0,dy/dx|.-,, = 4 > 0, is the steady-state gradient at the base of the slope (the point of slope
profile which is at the constant zero level which is taken as the foundation of the slope, according to y (bt, t) = 0,
is being considered).

The slope profile according to this expression once there is sufficient distance from its basement (y (bt, t) = 0)
tends to a straight line with gradient i = V/b. Expression (33) shows: (1) When the ratio of suhsidence velocity
to velocity of undercutting (V/b) is less numerically than the gradient (A4) at the base of the steady-state form
then the profile will be convex; (2) When V/b = A the slope becomes rectilinear; (3) When V/b > A the slope
becomes concave. Thus by an examination of the valley cross profile one can judge on the ratio of subsidence to
lateral undercutting. In the absence of subsidence (V' = 0), the solution (33) when the condition

lim y(x,t) = h = Ak/b
is used mstead of
dy

=A
6x x = bt

will transform into the steady-state solution (30).

The steady-state solutions (30, 33) conform with other theoretical and empirical studies. The first version of a
river valley slope development in mathematical terms was given by Gerber (Scheidegger, 1970). His
conclusions about slope profiles were based upon an estimate of the elementary volume of waste material with
the help of the increment height (y) and the horizontal coordinate (x). It enabled him to write down an ordinary
differential equation to determine the slope profile y(x). One of the solutions of this approach leads to

(Scheidegger, 1970)
tga, tgo,y
- - - + 4
y(x)=a, (1 tgal) [1 exp( a, x):l xtgo, (34)

which points to the asymptotic tendency of a profile to a straight llne
y(x) = xtgay+a, (1-[tga,/tga,])

It can be seen that Gerber’s solution obtained by a geometrical method comcides completely with our steady-
state solution with a tectonic factor (33). It should be noted that the Gerber model is similar to our model
mathematically but not geomorphologically (for a tectonic factor has not been introduced mto it directly). This
last equation allows us to put a physical meaning to the formal parameters m Gerber’s equation; thus,
tgo, = A, tga, = V/b (when a slope has developed sufficiently far from the initial slope it tends to a gradient
dependent upon the ratio of subsistence to undercutting), a, = 4k/bis the dimension coefficient characterizing
the process ratio of material removed from the slope (4k is the material discharge) and undercutting. When
tga, = 0 then the curve of the slope profile tends asymptotically to a constant height a, = h, and we arrive at
the expression

y(x) = h[1 —exp ([ —tga,/h]x)] (35)

which conforms to the steady-state solution in the absence of a tectomic factor (30) for a fixed time moment.
The empirical profiles of the undercut slopes of the Volga, Kama, and Vyatka river valleys and their
tributaries lead to an equation of form (35) (Trofimov, 1974) which is geomorphological confirmation of the
diffusion model applied to an undercut slope and to the existence in nature of steady-state slope regimes
according to equation (30).
Note that the steady-state solution (30) may be used in river valley asymmetry analysis, especially in the case
where the main factors are lateral erosion (due to the coriolis force) and slope processes. Characterized in (30)
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by the parameters b and k, respectively. One can easily characterize slope asymmetry by differences in the base
gradients. The base gradient may be found from equation (30) as follows
)
i=2l b
ax x =bt
Analysis shows (for the northern hemisphere) that when the height at the left and right shores slopes is equal (in
comparable hydrologic and climatolithological conditions) the maximum asymmetry of river valleys is shown
m the East-West current direction. In this case the maximum microclimatic difference in solar radiation
occurs. So both factors (insolation and coriolis force) operate in harmony to produce the consequent increase
in steepness on the right hand slope.

MODEL OF A PEDIMENT AND SCREE SLOPE FORMATION

An analysis of pediment and scree slope development has led to a new type of boundary value problem, one
that has not been discussed in theoretical geomorphology before. Previously we have considered: (1)
conditions on the function y; and (2) with conditions on — k dy/dx, the material discharge, in boundary value
problems for the diffusion equation of slope development. However, while analysing pediment and scree slope
development a third type of boundary condition arose, namely a linear combination of the previous two.

Suppose at t = 0 a vertical scarp of height H. The coordinate system has origin in the scarp base. Over the
subsequent interval ¢ > 0 the scarp retreats parallel at a constant velocity v and m such a way that material
accumulates at the base m the positive direction (y(x, 0) = 0). The exposed height of scarp face gradually
reduces. This leads to a decrease in the supply of material to the accumulating slope (a negative feedback
system; a slope of accumulation-scarp). The mathematical problem thus set is (Trofimov and Moskovkin,
1983)

oy 0ty

2okt —ng

3 kﬁxz’ MEx< +w

y(x,0=0,0<x < +o0, y(0,00=H (36)
dy

—kax=_v‘—kp.U(H—ylx=_vt)

where k. is the coefficient characterizing the relationship between the porosity of rock in situ and loose rock in
terms of the volume change.

The boundary condition in the contiguity point between the slope of accumuiation and the eroded core of
ground rock with a scarp retreating with constant velocity v is of the third type. It describes the interaction
mechanism between the scarp and the slope via the process of supply of material from the scarp. This condition
is analogous to the case of heat exchange with the environment according to Newton’s law of cooling in
problems of heat conduction (Carslaw and Jaeger, 1959).

The analysis of model (36) has shown that there is no steady-state solution of a ‘running wave’ type
y(x, t) = f(x + vt), satisfying the boundary condition of the third kind and the additional condition that

lim y(x,t) =0.

X

The important conclusion can be drawn that the scarp will vanish in the limit (¢ - oo0) independent of the value
of the coefficient K. The steady-state solution that would represent a scarp of constant height can only exist in
the presence of undercutting of the slope base.

In this connection we cannot fully agree with Kartashov’s (1975) suggestion that the accumulation at the
base of a scarp continues up to a definite limit even in the case where undercutting is absent. It is well known
that intensive removal of material from the base of a slope is needed for pediment formation. In spite of this,
even with a large material mohility coefficient k, model (30) will predict that the scarp will be overtopped in the
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limit. This is a crucial observation. In nature a pediment overlapping a scarp will take a very long time in
relation to the formation of scree slopes. Very often the scarp corresponding to the pediment disappears but
due to the lowering produced by a similar process operating on the opposite side. Surface lowering processes
due to the convergence from opposing directions are well described m classical geomorphological literature. In
this connection we consider the above mentioned equilibrium of Kartashov to be relative the scarp overlapping
process still takes place but at a small and declining velocity.

It follows from the boundary condition that the gradient at the contiguity pomt (x = —vt) decreases in the
course of time tending to zero. With the help of a change of variables £ = x + vt, t = t problem (36) is reduced
to a stable boundary value problem solvable by use of the Laplace transformation (Carslaw and Jaeger, 1959)
with common initial conditions y (&, 0) = V,, = const. When F;; = 0 the solution m our choice of variables may
be written (Trofimov and Moskovkin, 1983) (see Appendix 7)

H x k v o 20+ x
o= (o) () e e o (3545)-

2%k . — k.. 2% .
- (72_—1> exp [-Pk—” (x +kp.vt)]¢* (fzi\mg—t;’—’)} (37)

P

where
O*(2) = -2_15 Im exp (—n?)dn, ®*(z) = erfc (z2) = 1 —erf (2)

where erf (z) is the error function for argument z and is well tabulated. Solution (37)is true when k > 1, which
is always the case if the removed material is not removed from the system by a river or by wave actlon The scarp
overlap is theoretically achieved in the limit

lim y(—vt,t)=H
t— o0
Solution (37) m addition to giving the evolution of the scree slope also gives the development of the rock core. It
should be noted that the model is true for vertical scarps only; otherwise it is not possible to write down the
boundary conditions as of the third type.
To determine values of the coefficient k we need to find a maximum slope gradient at the initial instant from
the boundary conditions of solution (36) when

dy
=0 - = —k_.vH/k.
¥ Ox x=0 kp v /
It follows that for k, = 1-3; v = 107> m/y; H = 100 m, for natural gentle slopes (0 < i < 1-0) the inequality

k > 0-1 m?/y should be satisfied; and when v = 10”2 m/y and with the same values of k,and H —k > 1-0 m?/y.

The model analysis shows that the character of slope development substantially depends upon two non-
dimensional parameters (criteria similarity) k; = vH/k, k, = k_. The first is the more important and ranges
over 0 < k; < M, (M a real number not equal to o). The second has a smaller range, 1 < k, < 3 (where the
upper limit is approximate). If several slopes possess the same criteria values then they should develop in the
same way. Numerical computations of (37) have shown that the accumulation slope development with a weak
core takes place mainly with small values of criterion k;, (0 < k; < 10). Due to this criteria dependence the
model shows a complex space-time change of denudation, transition, and accumulation zones. Several
nuinerical computation variants are given in Figures 2 and 3. In Figure 2 (k = 0-:01 m?/y, v = 1073 m/y, k,
=2, H = 100, k, = 10), we show the denudation of the rock core, and in Figure 3 (k = 0-1 m?/y,v = 1073
m/y, kp. =2, H =100 m, k, = 1), the process of forming the base rock convex core. For the first variant
(Figure 2) the exposed height of the scarp face at a finite moment (96 x 10° y) has reached 0-2 m within a
horizontal distance of about 200 m with an accumulation slope of about 100 m. For the second variant
(Figure 3) the exposed height of the scarp at (736 x 10 y) has reached 0-7 m with a horizontal distance of about
1600 m and an accumulation slope of about 900 1n.
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Figure 2. Series of curves for solution (37) (for selected values of time) (parameters in the text)
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Figure 3. Series of curves for solution (37) (for selected values of time) (parameters in the text)

Note, numerical simulation by this model may be used when mountain territory is brought under cultivation
and to forecast when an advancing accumulation slope will reach roadways or other installations.
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APPENDIX 1

TO DEDUCE SOLUTION (6)

Putting z = \/ (Ix) in equation (4) transforms it into

4 \dy %y 1ay
(m)a—razﬁ;az (38)

Further reasoning is analogous to Culling’s work (1963) in which landform evolution with radial symmetry
was analysed. We give only initial stage of this reasoning.
The change y = exp (— ko u>t/41) u converts equation (38) to Bessel’s equation of order zero

d’u 1du p*
'd7+zgz—+l—2u—0 (39)
which has the solution
u = AJo (u/ (/1)) + BY, (u/ (x/1)) (40)

In accordance with the condition of the problem it is necessary to bound the function in the mterval
0 < x <, ie. B =0 and equation (40) may be simplified as follows u = A4J, (u\/ (x/D).

To satisfy the boundary condition y(l, t) = 0, u must be one of the roots of the equation J, (z) = 0 and so on
(see Culling, 1963, p. 156-157).

APPENDIX 2
TO DEDUCE EXPRESSIONS (9) AND (10)
When we obtained expression (9) with the help of equation (6), the integral

1
L Jo (tn/ (x/1)) dx

was obtained by substituting v = u,,\/ (x/I) and using tables of integrals (Dwight, 1961)

bn o/ Uo/1)
[ e = /o5 o)
0
The integral of expression (9) when f(x) = h(1 —[x/I]) is transformed as follows:
1 1 1
A= j zf(z%) Jy (u,2)dz = h‘[ zJo(unz)dz—hJ 2305 (pa2)dz (41)
0 0 0

where the first integral has been analysed above and equals (h/u,) J, (1,) and the second one has been found as
an indefinite integral with the help of mtegration by parts and relations for Bessel’s function

f 03 Jo (v)dv = 202 J, (v) + (v — 4v) J; (v) (42)

Using equation (42) with the help of J, (u,) = O the expression (41) is transformed in the following way

[}

= (4h/u3) Jy (1,) (43)

He
A = (h/p,) J, (u..)—(h/u:)j v*Jo (V) dv = (h/p,) Iy (a) — (W/piz) [2083 Jo (1) + (13 — 414,) I () ]
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Putting it into equation (9), we obtain

N ) & Jy (pa/ lo/1) €xp (— ko p21/41)
W(’)_hl"(l_i) 1ov/ih T, Ty (e “9

When [ = [, the expression (43) transforms into (10).

APPENDIX 3

SOLUTION OF THE EQUATION (17) BY FOURIER'S METHOD

Using Fourier’s method for the function y(x, t) m equation (17) we obtain: y(x, t) = X (x)T'(t). Putting this in
equation (17) and differentiating we have

2

dT dx " d*x
Xd—t_(zax+b)d—xT+(ax +bx+c)Ex—2T (45)

For separation of the variables divide both sides of (45) by XT and equate them with the indefinite separation
parameter m

d71 _ (2ax+b) dX+(ax2+bx+c) aex

— = = — 46
a7 X dx X a? - " (46)
Thus we have obtained two independent ordinary differential equations
a7
—+ml=0
a +m
47
42X 47

(ax?> +bx +c¢) +(2ax+b)%+mx=0

dx?
Solution of the second equation of the system (47).

By the change of variables X = (£), x = x, (x, —x,) £ reduce it to the hypergeometric equation

d?n 2ax,+b Jdn m,
é(é_l)d-€7+[2é+——a(x2—xl)j|E+;€_0 (48)

where x; and x, are the roots of the quadratic equation ax?+bx+c¢ =0, a < 0.
Using the formula for the roots of a quadratic equation obtain the second terin (in square brackets)

2ax, +b _[20(—b—\/2(b2—4ac))+b]/a (2\/(b2—4ac))= 4
a

a(x; —x1) 2a
Then equation (48) can be rewritten as follows:
d*n dn m
1) ——+QRE-1)—+—n=0 49
EE-1) gr =D g+ (49)
Using ¢ = (1 —2z)/2 reduce equation (49) to Legendre’s equation, noting that
G i & d
dé dz’ d¢? dz?
d ,dn
hal Y il = 0
dz[(l ) dz}-fln 0 (50)

where A = —m/ja, — 1 <z < 1.
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The Legendre’s polynomials P,(z) are fundamental functions that correspond to the eigenvalues
A, = (n + l)nand they are the solutions of the following problem (Tikhonov and Samarsky, 1966, p. 665): ‘Find
A for which there are the non-trivial solutions on the segment [ — 1, 1] of Legendre’s equation (50), bounded at
z= +1 (n(£1) < o0) and satisfying the condition of normalization 5(1) = 1". It is the solution of the
eigenvalue problem or the Sturm—Liouville problem. No concrete boundary conditions are needed except the
boundedness of the function at the limits.

We give the first few Legendre’s polynomials: Py (z) = 1, P, (z) = z, P, (z) = (1/2) (322 — 1), P3(2) = (1/2) (52>
~—3z), ... Of these Py(z) and P, (z) have been used in obtaining the regular and limited solutions (19).

Solution of the first equation of the system (47)
Using the separation parameter A, = (n+ 1)n = —m/a we obtain
T,(t) =C,exp (a(n+1)nt) (51)

where C, are integration constants corresponding to the eigenvalue 4, = (n+ 1)n.

General solution
The general solution of equation (17) by Fourier’s method is given as the series

y(z,t)= i C,P,(2)exp (a(n+1)n1) (52)

where z is connected with the previous variable x i this way: x = x; + (x; —x;)[ (1 —2)/2].
The constants C, may be found from the condition of orthogonality of Legendre’s polynomials

1 0; m+#n
J—; P,(2)P,(z)dz = 2n2+1 m=n (33)
The general solution (52) when ¢t = 0 is
y(z,0)=1(2) = Z C.P,(2) (34

When both parts of equality (54) are multiplied by P, (z) and the expressions obtained are integrated over the
interval from —1 to +1 we find

+1 +1
'[ f@@ P,(2)dz = Z C, j P,(z)P,(z)dz (55)
-1 n=0
from which using the orthogonality of Legendre’s polynomials, we obtam
1 +1
C, = <n + E) f(z)P,(z)dz (56)
-1

The expressions (52 and 56) give the final solution of the problem.

APPENDIX 4

THE SOLUTION OF BOUNDARY VALUE PROBLEM (28)

With the help of change of variables £ = x — bt, t = ¢, the variable boundary value problem (28) is transformed
to a stable boundary value problem

0 02 dy
= kG0 = 0yE 0 = fBO<E < +oo (57)
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Let us illustrate Fourier’s method for problem solution on a semi-infinite interval considering problem (57)
as an example.

Separating variables y (¢, t) = X (£)T (¢) in (57) we obtain the system of ordinary differential equations

ar() _
5 kT =0

d’X () bdX (%) _
@ tiar THX©=0

(58)

where u is separation parameter.
The solution of second equation of this system is

X (&) =exp ( - 2% é) [A(4) cos A¢ + B(A) sin A£] (59)

The solution of first equation of the system is
T(t) = exp[ — k(A2 + b?/4k?)] (60)

where u? = A2 + b?/4k?, A(J), B(A) are some functions of the parameter A.
By multiplying (59) and (60) we obtain a partial solution. The general solution is as follows

+ o 2
v )= J‘ exp(—%ﬁ)exp [ —kt ().2+f?)] [A(4) cos A& + B(A) sin A¢]dA (61)

0

When t = 0 the solution (61) is transformed in the following way

+ o

y(60) =1 =f

exp ( —% é) [A(4)cos A& + B(A) sin A&]dA (62)
0
To make it possible to apply Fourier’s formula we consider the function f(&) to be defined on an infinite
interval. Then from (62) we obtain

Ay = % Jjw f{z)exp <2% z) cosAzdz

1 + o b (63)
B(l)::;J‘ f(2)exp <ﬂ z) sin Azdz

Putting 4(4) and B(4) from (63) in the general solution (61) and assuming that f(&) is an absolutely integrable
function in the interval (— oo, + o0), mterchanging integrations on A and on z, and calculating the internal
inteoral (Fihtengoltz, 1960)

N _1 (z—¢&?
L exp (—ki%?t)cos A (z—&)dA = 5\/(n/kt) exp[— T ]

we obtain

_exp(—b?tjak) [* b (z—¢&)?
Y(i,t)——z\mt)—ﬁwf(Z)CXP[zk(Z—é)]CXP[— i ]dz (64)

In order to come to problem (57) for the semi-infinite interval with zero boundary condition prolongate the
function f(&) exp ([b/2k] £) by odd form and then come to solution (29), respectively.
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APPENDIX 5

STEADY-STATE SOLUTION (30) AS ASYMPTOTIC SOLUTION OF PROBLEM (28)

In connection with the condition of the problem the slope’s base retreats with constant velocity b. In this case a
steady-state solution of the problem (28) may be found as follows
y=¢(@,z=x-bt (65)

Putting (65) into equation (28) and performing the differentiations we obtain a second-order ordinary
differential equation

d2¢ bd¢ '

F"FE a =0 (66)
With the help of a change of variables d¢/dz = w(z) and taking into account both the main boundary
condition ¢ (0) = 0 and supplementary ones

lim y(x,t)=lim ¢(z)=h

X

(his the limiting horizontal surface of the slope) the solution of (66) is obtained as (30). For initial slope profile
stahility analysis (31) put (30) into (29) and calculate the integrals to obtain the solution (Moskovkm and
Trofimov, 1980)

_h SEE N WY G P _oX=20t (ck=b) (s —
y(x,t)—2{1+d)<2\/(kt)) cxp( k(x bt))[l (I)(z\/(kt))]-i-exp[ x ((ck b)t+x):|
2t(ck —b)+x 2ckt — x
1-0f —— ) |- ke — - —— \ 67
x[ (D< 2/ (k) )] P {clek x))[l ®(2\/(kt)):|} ©7

j exp (n%)dn
0

where

() = \/i
4

is the error function.

When ¢ = b/k solution (67) transforms into the steady-state solution (30). The analysis (67) shows that the
value b = ck is critical and defines two different regimes of slope development (see the section Steady-state
regime of undercut slopes).

When ¢ # b k solution (67) asymptotically (when t is large) transforms into the steady-state sohition (30). It
follows from the state that the first and last two error functions in solution (67) when x > bt tend to zero and

lim © x —2bt _ O(0) =1, x > 2bt
e \2ke ) T 1@(=00)= —1,bt <x < 21

From this when bt < x < 2bt we have solution (30) and when x > 2bt we have

lim y(x,t)=h
t-+ a0
Note, that Culling (1963, p. 153) has shown that the steady-state solution (30) was an asymptotic solution to the
problem for an initial vertical slope (scarp).
As we see from the section Steady-state regime of undercut slopes, the asymptotic solution of problem (28)
may be found from the general solution (29) when f(z) = h. Putting it into equation (29) we obtain after

integration
h x b x—2bt
T I P —Zix—b Y el
2{¢(2J(kt)> exp( e ”)[1 (2\/(kt)>]}
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From this we obtain the same results as when analysing asymptotic hehaviour of the solution (67).
APPENDIX 6

THE SOLUTION OF STEADY-STATE PROBLEM (33)

Find a solution similar to (65) (see Appendix 5). Putting (65) into equation (32) and differentiating, we obtaina
second-order ordinary differential equation:

d’¢ bd¢p V

hallh G Sk P 8

a2 Tk k0 (68)
With the help of a change of variables d¢/dz = w(z), d?¢/dz* = dw/dz reduce (68) to the first-order ordinary
differential equation:

dw b vV
—_— —_ —— 9
PR 0 (69)
A solution may then be found with the help of a constant variation method
b vV
- 2 - 0
w(z) Clexp( kz)+b (70)
where C, is a constant of integration.
Using the boundary condition
dy d¢
el =X = =A
dx x=bt dz z2=0 W(O)

from equation (70) find the constant of integration: C, = A — V/b. Now find ¢ (z) by integration of (70) on z

o(2) = —2<A—%>exp(—§z>+%z+Cz (71)

The second constant of integration is found with the help of the second boundary condition y(bt,t) = ¢ (0) = 0
from the solution (71): C, = (k/b) (A — V/b). Putting this constant in solution (71) and returning to the
previous variables we have the desired solution (30).

APPENDIX 7

TO DEDUCE SOLUTION (37)
With the help of a change of variables & = x + vt, t = 1 we reduce (30) to the stable boundary value problem
62
dy 9 dy

—a—t— 56—2_052’ 0<{<+oo
(72)
y(£,0)=0 —k?l =k, v(H—yle=0)
) (] 6& £=0 p y E=0
Using the Laplace transforin
+ oo
y= j e P ydt
0
we obtain the second-order ordinary differential equation
d%y y
_y__‘id_y_By=o (73)

d&* kdé k
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the solution of which is

v 02 p 1/2
vV = C —_— —_— —— p—
y=Crexp [Zké <4k2+k> é] (74)
where C, is an integration constant,
Note, that the second linearly independent solution of equation (73) was rejected because of its unboundedness

when ¢ — 0, i.e. the second integration constant is taken as equal to zero (c, = 0).
The boundary condition, with the help of the Laplace transform, reduces to

dy kp.v _) kp.vH
et A = - , 75
< @ Tk imo kp (75)
Putting (74) when & = 0 into equation (75) we obtaim the integration constant C, as follows
k,.vH v v p\'? kv
C, = ~-22 SRR R . __p
! < kp )/[Zk (4k2 +k> k ] (76)

Putting expression C, into equation (74) we obtain the final expression for 7(&, p). Using the inverse Laplace
transform obtain solution (37) for function y(¢, t) or y(x, t) (see also Carslaw and Jaeger, 1959).
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